Your browser doesn't support javascript.
loading
Building and Breaking Bonds via a Compact S-Propargyl-Cysteine to Chemically Control Enzymes and Modify Proteins.
Liu, Jun; Cheng, Rujin; Wu, Haifan; Li, Shanshan; Wang, Peng G; DeGrado, William F; Rozovsky, Sharon; Wang, Lei.
Afiliação
  • Liu J; University of California, San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA, 94158, USA.
  • Cheng R; University of Delaware, Department of Chemistry and Biochemistry, Newark, DE, 19716, USA.
  • Wu H; University of California, San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA, 94158, USA.
  • Li S; University of California, San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA, 94158, USA.
  • Wang PG; Department of Chemistry and Center for Therapeutics and Diagnostics, Georgia State University, Atlanta, GA, 30302, USA.
  • DeGrado WF; Department of Chemistry and Center for Therapeutics and Diagnostics, Georgia State University, Atlanta, GA, 30302, USA.
  • Rozovsky S; University of California, San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA, 94158, USA.
  • Wang L; University of Delaware, Department of Chemistry and Biochemistry, Newark, DE, 19716, USA.
Angew Chem Int Ed Engl ; 57(39): 12702-12706, 2018 09 24.
Article em En | MEDLINE | ID: mdl-30118570
ABSTRACT
Analogous to reversible post-translational protein modifications, the ability to attach and subsequently remove modifications on proteins would be valuable for protein and biological research. Although bioorthogonal functionalities have been developed to conjugate or cleave protein modifications, they are introduced into proteins on separate residues and often with bulky side chains, limiting their use to one type of control and primarily protein surface. Here we achieved dual control on one residue by genetically encoding S-propargyl-cysteine (SprC), which has bioorthogonal alkyne and propargyl groups in a compact structure, permitting usage in protein interior in addition to surface. We demonstrated its incorporation at the dimer interface of glutathione transferase for in vivo crosslinking via thiol-yne click chemistry, and at the active site of human rhinovirus 3C protease for masking and then turning on enzyme activity via Pd-cleavage of SprC into Cys. In addition, we installed biotin onto EGFP via Sonogashira coupling of SprC and then tracelessly removed it via Pd cleavage. SprC is small in size, commercially available, nontoxic, and allows for bond building and breaking on a single residue. Genetically encoded SprC will be valuable for chemically controlling proteins with an essential Cys and for reversible protein modifications.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Virais / Cisteína Endopeptidases / Cisteína / Proteínas de Fluorescência Verde Limite: Humans Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Virais / Cisteína Endopeptidases / Cisteína / Proteínas de Fluorescência Verde Limite: Humans Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos