Your browser doesn't support javascript.
loading
DNA Methylation Profiling of Breast Cancer Cell Lines along the Epithelial Mesenchymal Spectrum-Implications for the Choice of Circulating Tumour DNA Methylation Markers.
Le, Anh Viet-Phuong; Szaumkessel, Marcin; Tan, Tuan Zea; Thiery, Jean-Paul; Thompson, Erik W; Dobrovic, Alexander.
Afiliação
  • Le AV; Olivia Newton John Cancer Research Institute, Heidelberg, VIC 3084, Australia. anh.vple@gmail.com.
  • Szaumkessel M; Department of Surgery, St. Vincent's Hospital, University of Melbourne, Melbourne, VIC 3065, Australia. anh.vple@gmail.com.
  • Tan TZ; Olivia Newton John Cancer Research Institute, Heidelberg, VIC 3084, Australia. Marcin.Szaumkessel@onjcri.org.au.
  • Thiery JP; Cancer Science Institute of Singapore, 14 Medical Drive, National University of Singapore, Singapore 117599, Singapore. csittz@nus.edu.sg.
  • Thompson EW; Cancer Science Institute of Singapore, 14 Medical Drive, National University of Singapore, Singapore 117599, Singapore. bchtjp@nus.edu.sg.
  • Dobrovic A; INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, Université Paris-Sud, 94805 Villejuif, France. bchtjp@nus.edu.sg.
Int J Mol Sci ; 19(9)2018 Aug 28.
Article em En | MEDLINE | ID: mdl-30154364
ABSTRACT
(1)

Background:

Epithelial⁻mesenchymal plasticity (EMP) is a dynamic process whereby epithelial carcinoma cells reversibly acquire morphological and invasive characteristics typical of mesenchymal cells. Identifying the methylation differences between epithelial and mesenchymal states may assist in the identification of optimal DNA methylation biomarkers for the blood-based monitoring of cancer. (2)

Methods:

Methylation-sensitive high-resolution melting (MS-HRM) was used to examine the promoter methylation status of a panel of established and novel markers in a range of breast cancer cell lines spanning the epithelial⁻mesenchymal spectrum. Pyrosequencing was used to validate the MS-HRM results. (3)

Results:

VIM, DKK3, and CRABP1 were methylated in the majority of epithelial breast cancer cell lines, while methylation of GRHL2, MIR200C, and CDH1 was restricted to mesenchymal cell lines. Some markers that have been used to assess minimal residual disease such as AKR1B1 and APC methylation proved to be specific for epithelial breast cell lines. However, RASSF1A, RARß, TWIST1, and SFRP2 methylation was seen in both epithelial and mesenchymal cell lines, supporting their suitability for a multimarker panel. (4)

Conclusions:

Profiling DNA methylation shows a distinction between epithelial and mesenchymal phenotypes. Understanding how DNA methylation varies between epithelial and mesenchymal phenotypes may lead to more rational selection of methylation-based biomarkers for circulating tumour DNA analysis.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Biomarcadores Tumorais / Metilação de DNA / DNA Tumoral Circulante Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Female / Humans Idioma: En Revista: Int J Mol Sci Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Austrália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Biomarcadores Tumorais / Metilação de DNA / DNA Tumoral Circulante Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Female / Humans Idioma: En Revista: Int J Mol Sci Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Austrália