A Bayesian framework for efficient and accurate variant prediction.
PLoS One
; 13(9): e0203553, 2018.
Article
em En
| MEDLINE
| ID: mdl-30212499
There is a growing need to develop variant prediction tools capable of assessing a wide spectrum of evidence. We present a Bayesian framework that involves aggregating pathogenicity data across multiple in silico scores on a gene-by-gene basis and multiple evidence statistics in both quantitative and qualitative forms, and performs 5-tiered variant classification based on the resulting probability credible interval. When evaluated in 1,161 missense variants, our gene-specific in silico model-based meta-predictor yielded an area under the curve (AUC) of 96.0% and outperformed all other in silico predictors. Multifactorial model analysis incorporating all available evidence yielded 99.7% AUC, with 22.8% predicted as variants of uncertain significance (VUS). Use of only 3 auto-computed evidence statistics yielded 98.6% AUC with 56.0% predicted as VUS, which represented sufficient accuracy to rapidly assign a significant portion of VUS to clinically meaningful classifications. Collectively, our findings support the use of this framework to conduct large-scale variant prioritization using in silico predictors followed by variant prediction and classification with a high degree of predictive accuracy.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Teorema de Bayes
Tipo de estudo:
Prognostic_studies
/
Qualitative_research
/
Risk_factors_studies
Idioma:
En
Revista:
PLoS One
Assunto da revista:
CIENCIA
/
MEDICINA
Ano de publicação:
2018
Tipo de documento:
Article
País de afiliação:
Estados Unidos