Your browser doesn't support javascript.
loading
A TGF-ß type I receptor-like molecule with a key functional role in Haemonchus contortus development.
He, Li; Gasser, Robin B; Korhonen, Pasi K; Di, Wenda; Li, Fangfang; Zhang, Hongrun; Li, Facai; Zhou, Yanqin; Fang, Rui; Zhao, Junlong; Hu, Min.
Afiliação
  • He L; State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
  • Gasser RB; State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Department of Veterinary Biosciences, Melbourne Veterinary School, Facu
  • Korhonen PK; Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
  • Di W; State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
  • Li F; State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
  • Zhang H; State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
  • Li F; State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterin
  • Zhou Y; State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
  • Fang R; State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
  • Zhao J; State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
  • Hu M; State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China. Electronic address: mhu@mail.hzau.edu.cn.
Int J Parasitol ; 48(13): 1023-1033, 2018 11.
Article em En | MEDLINE | ID: mdl-30266591
Here we investigated the gene of a transforming growth factor (TGF)-ß type I receptor-like molecule in Haemonchus contortus, a highly pathogenic and economically important parasitic nematode of small ruminants. Designated Hc-tgfbr1, this gene is transcribed in all developmental stages of H. contortus, and the encoded protein has glycine-serine rich and kinase domains characteristic of a TGF-ß family type I receptor. Expression of a GFP reporter driven by the putative Hc-tgfbr1 promoter localised to two intestinal rings, the anterior-most intestinal ring (int ring I) and the posterior-most intestinal ring (int ring IX) in Caenorhabditis elegans in vivo. Heterologous genetic complementation using a plasmid construct containing Hc-tgfbr1 genomic DNA failed to rescue the function of Ce-daf-1 (a known TGF-ß type I receptor gene) in a daf-1-deficient mutant strain of C. elegans. In addition, a TGF-ß type I receptor inhibitor, galunisertib, and double-stranded RNA interference (RNAi) were employed to assess the function of Hc-tgfbr1 in the transition from exsheathed L3 (xL3) to the L4 of H. contortus in vitro, revealing that both galunisertib and Hc-tgfbr1-specific double-stranded RNA could retard L4 development. Taken together, these results provide evidence that Hc-tgfbr1 is involved in developmental processes in H. contortus in the transition from the free-living to the parasitic stage.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Receptor do Fator de Crescimento Transformador beta Tipo I / Haemonchus Limite: Animals Idioma: En Revista: Int J Parasitol Ano de publicação: 2018 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Receptor do Fator de Crescimento Transformador beta Tipo I / Haemonchus Limite: Animals Idioma: En Revista: Int J Parasitol Ano de publicação: 2018 Tipo de documento: Article País de afiliação: China