Your browser doesn't support javascript.
loading
Inhibition of DNA Methylation With Zebularine Alters Lipopolysaccharide-Induced Sickness Behavior and Neuroinflammation in Mice.
Matt, Stephanie M; Zimmerman, Jalisa D; Lawson, Marcus A; Bustamante, Angela C; Uddin, Monica; Johnson, Rodney W.
Afiliação
  • Matt SM; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
  • Zimmerman JD; Animal Sciences Laboratory, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
  • Lawson MA; Animal Sciences Laboratory, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
  • Bustamante AC; Animal Sciences Laboratory, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
  • Uddin M; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
  • Johnson RW; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
Front Neurosci ; 12: 636, 2018.
Article em En | MEDLINE | ID: mdl-30279646
ABSTRACT
Activity of DNA methyltransferases (DNMTs), the enzymes that catalyze DNA methylation, is dynamically regulated in the brain. DNMT inhibitors alter DNA methylation globally in the brain and at individual neural plasticity-associated genes, but how DNMT inhibitors centrally influence lipopolysaccharide (LPS)-induced neuroinflammation is not known. We investigated whether the DMNT inhibitor, zebularine, would alter sickness behavior, DNA methylation of the Il-1ß promoter and expression of inflammatory genes in hippocampus and microglia. Contrary to our hypothesis that zebularine may exaggerate LPS-induced sickness response and neuroinflammation, adult mice treated with an intracerebroventricular (ICV) injection of zebularine prior to LPS had surprisingly faster recovery of burrowing behavior compared to mice treated with LPS. Further, genes of inflammatory markers, epigenetic regulators, and the microglial sensory apparatus (i.e., the sensome) were differentially expressed by zebularine alone or in combination with LPS. Bisulfite pyrosequencing revealed that ICV zebularine led to decreased DNA methylation of two CpG sites near the Il-1ß proximal promoter alone or in combination with LPS. Zebularine treated mice still exhibited decreased DNA methylation 48 h after treatment when LPS-induced sickness behavior as well as hippocampal and microglial gene expression were similar to control mice. Taken together, these data suggest that decreased DNA methylation, specifically of the Il-1ß promoter region, with a DNMT inhibitor in the brain disrupts molecular mechanisms of neuroinflammation.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Neurosci Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Neurosci Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos