Unconventional field-effect transistor composed of electrons floating on liquid helium.
J Phys Condens Matter
; 30(46): 465501, 2018 Nov 21.
Article
em En
| MEDLINE
| ID: mdl-30280700
We report on an unconventional macroscopic field effect transistor composed of electrons floating above the surface of superfluid helium. With this device unique transport regimes are realized in which the charge density of the electron layer can be controlled in a manner not possible in other material systems. In particular, we are able to manipulate the collective behavior of the electrons to produce a highly non-uniform, but precisely controlled, charge density to reveal a negative source-drain current. This behavior can be understood by considering the propagation of damped charge oscillations along a transmission line formed by the inhomogeneous sheet of two-dimensional electrons above, and between, the source and drain electrodes of the transistor.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
J Phys Condens Matter
Assunto da revista:
BIOFISICA
Ano de publicação:
2018
Tipo de documento:
Article
País de afiliação:
Estados Unidos