Your browser doesn't support javascript.
loading
Machine learning and structural analysis of Mycobacterium tuberculosis pan-genome identifies genetic signatures of antibiotic resistance.
Kavvas, Erol S; Catoiu, Edward; Mih, Nathan; Yurkovich, James T; Seif, Yara; Dillon, Nicholas; Heckmann, David; Anand, Amitesh; Yang, Laurence; Nizet, Victor; Monk, Jonathan M; Palsson, Bernhard O.
Afiliação
  • Kavvas ES; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
  • Catoiu E; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
  • Mih N; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
  • Yurkovich JT; Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA.
  • Seif Y; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
  • Dillon N; Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA.
  • Heckmann D; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
  • Anand A; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
  • Yang L; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA.
  • Nizet V; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
  • Monk JM; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
  • Palsson BO; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
Nat Commun ; 9(1): 4306, 2018 10 17.
Article em En | MEDLINE | ID: mdl-30333483
Mycobacterium tuberculosis is a serious human pathogen threat exhibiting complex evolution of antimicrobial resistance (AMR). Accordingly, the many publicly available datasets describing its AMR characteristics demand disparate data-type analyses. Here, we develop a reference strain-agnostic computational platform that uses machine learning approaches, complemented by both genetic interaction analysis and 3D structural mutation-mapping, to identify signatures of AMR evolution to 13 antibiotics. This platform is applied to 1595 sequenced strains to yield four key results. First, a pan-genome analysis shows that M. tuberculosis is highly conserved with sequenced variation concentrated in PE/PPE/PGRS genes. Second, the platform corroborates 33 genes known to confer resistance and identifies 24 new genetic signatures of AMR. Third, 97 epistatic interactions across 10 resistance classes are revealed. Fourth, detailed structural analysis of these genes yields mechanistic bases for their selection. The platform can be used to study other human pathogens.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Genoma Bacteriano / Farmacorresistência Bacteriana / Aprendizado de Máquina / Mycobacterium tuberculosis Tipo de estudo: Evaluation_studies / Prognostic_studies Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Genoma Bacteriano / Farmacorresistência Bacteriana / Aprendizado de Máquina / Mycobacterium tuberculosis Tipo de estudo: Evaluation_studies / Prognostic_studies Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos