Your browser doesn't support javascript.
loading
Ten antenna proteins are associated with the core in the supramolecular organization of the photosystem I supercomplex in Chlamydomonas reinhardtii.
Kubota-Kawai, Hisako; Burton-Smith, Raymond N; Tokutsu, Ryutaro; Song, Chihong; Akimoto, Seiji; Yokono, Makio; Ueno, Yoshifumi; Kim, Eunchul; Watanabe, Akimasa; Murata, Kazuyoshi; Minagawa, Jun.
Afiliação
  • Kubota-Kawai H; From the Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan.
  • Burton-Smith RN; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan.
  • Tokutsu R; From the Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan.
  • Song C; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan.
  • Akimoto S; From the Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan.
  • Yokono M; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan.
  • Ueno Y; the Departments of Basic Biology and.
  • Kim E; the National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan.
  • Watanabe A; the Graduate School of Science, Kobe University, Kobe 657-8501, Japan, and.
  • Murata K; the Innovation Center, Nippon Flour Mills Co., Ltd., Atsugi 243-0041, Japan.
  • Minagawa J; the Graduate School of Science, Kobe University, Kobe 657-8501, Japan, and.
J Biol Chem ; 294(12): 4304-4314, 2019 03 22.
Article em En | MEDLINE | ID: mdl-30670590
ABSTRACT
Photosystem I (PSI) is a large pigment-protein complex mediating light-driven charge separation and generating a highly negative redox potential, which is eventually utilized to produce organic matter. In plants and algae, PSI possesses outer antennae, termed light-harvesting complex I (LHCI), which increase the energy flux to the reaction center. The number of outer antennae for PSI in the green alga Chlamydomonas reinhardtii is known to be larger than that of land plants. However, their exact number and location remain to be elucidated. Here, applying a newly established sample purification procedure, we isolated a highly pure PSI-LHCI supercomplex containing all nine LHCA gene products under state 1 conditions. Single-particle cryo-EM revealed the 3D structure of this supercomplex at 6.9 Å resolution, in which the densities near the PsaF and PsaJ subunits were assigned to two layers of LHCI belts containing eight LHCIs, whereas the densities between the PsaG and PsaH subunits on the opposite side of the LHCI belt were assigned to two extra LHCIs. Using single-particle cryo-EM, we also determined the 2D projection map of the lhca2 mutant, which confirmed the assignment of LHCA2 and LHCA9 to the densities between PsaG and PsaH. Spectroscopic measurements of the PSI-LHCI supercomplex suggested that the bound LHCA2 and LHCA9 proteins have the ability to increase the light-harvesting energy for PSI. We conclude that the PSI in C. reinhardtii has a larger and more distinct outer-antenna organization and higher light-harvesting capability than that in land plants.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Chlamydomonas reinhardtii / Complexos de Proteínas Captadores de Luz / Complexo de Proteína do Fotossistema I Tipo de estudo: Risk_factors_studies Idioma: En Revista: J Biol Chem Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Chlamydomonas reinhardtii / Complexos de Proteínas Captadores de Luz / Complexo de Proteína do Fotossistema I Tipo de estudo: Risk_factors_studies Idioma: En Revista: J Biol Chem Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Japão