Your browser doesn't support javascript.
loading
Charge Transfer Dynamics of Phase-Segregated Halide Perovskites: CH3NH3PbCl3 and CH3NH3PbI3 or (C4H9NH3)2(CH3NH3) n-1Pb nI3 n+1 Mixtures.
ACS Appl Mater Interfaces ; 11(9): 9583-9593, 2019 Mar 06.
Article em En | MEDLINE | ID: mdl-30789701
ABSTRACT
Lead halide perovskites present a versatile class of solution-processable semiconductors with highly tunable bandgaps that span ultraviolet, visible, and near-infrared portions of the spectrum. We explore phase-separated chloride and iodide lead perovskite mixtures as candidate materials for intermediate band applications in future photovoltaics. X-ray diffraction and scanning electron microscopy reveal that deposition of precursor solutions across the MAPbCl3/MAPbI3 composition space affords quasi-epitaxial cocrystallized films, in which the two perovskites do not alloy but instead remain phase-segregated. First-principle calculations further support the formation of an epitaxial interface and predict energy offsets in the valence band and conduction band edges that could result in intermediate energy absorption. The charge dynamics of variable mixtures of the relatively narrow bandgap (1.57 eV) MAPbI3 perovskite and wide bandgap (3.02 eV) MAPbCl3 are probed to map charge and energy flow direction and kinetics. Time-resolved photoluminescence and transient absorption measurements reveal charge transfer of photoexcited carriers in MAPbCl3 to MAPbI3 in tens of picoseconds. The rate of quenching can be further tuned by replacing MAPbI3 with two-dimensional Ruddlesden-Popper (BA)2(MA) n-1Pb nI3 n+1 ( n = 3, 2, and 1) perovskites, which also remain phase-separated.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2019 Tipo de documento: Article