Your browser doesn't support javascript.
loading
Carbon fixation and energy metabolisms of a subseafloor olivine biofilm.
Smith, Amy R; Kieft, Brandon; Mueller, Ryan; Fisk, Martin R; Mason, Olivia U; Popa, Radu; Colwell, Frederick S.
Afiliação
  • Smith AR; Woods Hole Oceanographic Institution, Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Road, MS #51, Woods Hole, MA, 02543, USA. asmith@whoi.edu.
  • Kieft B; Oregon State University, Corvallis, OR, 97330, USA.
  • Mueller R; Oregon State University, Corvallis, OR, 97330, USA.
  • Fisk MR; Oregon State University, Corvallis, OR, 97330, USA.
  • Mason OU; Florida State University, Tallahassee, FL, 32306, USA.
  • Popa R; University of Southern California, Los Angeles, CA, 90089, USA.
  • Colwell FS; Oregon State University, Corvallis, OR, 97330, USA.
ISME J ; 13(7): 1737-1749, 2019 07.
Article em En | MEDLINE | ID: mdl-30867546
ABSTRACT
Earth's largest aquifer ecosystem resides in igneous oceanic crust, where chemosynthesis and water-rock reactions provide the carbon and energy that support an active deep biosphere. The Calvin Cycle is the predominant carbon fixation pathway in cool, oxic, crust; however, the energy and carbon metabolisms in the deep thermal basaltic aquifer are poorly understood. Anaerobic carbon fixation pathways such as the Wood-Ljungdahl pathway, which uses hydrogen (H2) and CO2, may be common in thermal aquifers since water-rock reactions can produce H2 in hydrothermal environments and bicarbonate is abundant in seawater. To test this, we reconstructed the metabolisms of eleven bacterial and archaeal metagenome-assembled genomes from an olivine biofilm obtained from a Juan de Fuca Ridge basaltic aquifer. We found that the dominant carbon fixation pathway was the Wood-Ljungdahl pathway, which was present in seven of the eight bacterial genomes. Anaerobic respiration appears to be driven by sulfate reduction, and one bacterial genome contained a complete nitrogen fixation pathway. This study reveals the potential pathways for carbon and energy flux in the deep anoxic thermal aquifer ecosystem, and suggests that ancient H2-based chemolithoautotrophy, which once dominated Earth's early biosphere, may thus remain one of the dominant metabolisms in the suboceanic aquifer today.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bactérias / Archaea / Silicatos / Compostos de Magnésio / Compostos de Ferro Idioma: En Revista: ISME J Assunto da revista: MICROBIOLOGIA / SAUDE AMBIENTAL Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bactérias / Archaea / Silicatos / Compostos de Magnésio / Compostos de Ferro Idioma: En Revista: ISME J Assunto da revista: MICROBIOLOGIA / SAUDE AMBIENTAL Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos