Your browser doesn't support javascript.
loading
Multi-level engineering of Baeyer-Villiger monooxygenase-based Escherichia coli biocatalysts for the production of C9 chemicals from oleic acid.
Seo, Eun-Ji; Kang, Chae Won; Woo, Ji-Min; Jang, Sungho; Yeon, Young Joo; Jung, Gyoo Yeol; Park, Jin-Byung.
Afiliação
  • Seo EJ; Department of Food Science & Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.
  • Kang CW; Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
  • Woo JM; Department of Food Science & Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.
  • Jang S; Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
  • Yeon YJ; Department of Biochemical Engineering, Gangneung-Wonju National University, Gangneung, 25457, Republic of Korea.
  • Jung GY; Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea. Electronic address: gyjung@postech.ac.kr.
  • Park JB; Department of Food Science & Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea. Electronic address: jbpark06@ewha.ac.kr.
Metab Eng ; 54: 137-144, 2019 07.
Article em En | MEDLINE | ID: mdl-30953778
ABSTRACT
Whole-cell biotransformation is one of the promising alternative approaches to microbial fermentation for producing high-value chemicals. Baeyer-Villiger monooxygenase (BVMO)-based Escherichia coli biocatalysts have been engineered to produce industrially relevant C9 chemicals, such as n-nonanoic acid and 9-hydroxynonanoic acid, from a renewable long-chain fatty acid. The key enzyme in the biotransformation pathway (i.e., BVMO from Pseudomonans putida KT2440) was first engineered, using structure modeling-based design, to improve oxidative and thermal stabilities. Using a stable and tunable plasmid (STAPL) system, E. coli host cells were engineered to have increased plasmid stability and homogeneity of the recombinant E. coli population, as well as to optimize the level of BVMO expression. Multi-level engineering of the key enzyme in host cells, allowed recombinant E. coli expressing a fatty acid double-bond hydratase, a long-chain secondary alcohol dehydrogenase, and the engineered BVMO from P. putida KT2440 (i.e., E6BVMO_C302L/M340L), to ultimately produce C9 chemicals (i.e., n-nonanoic acid and 9-hydroxynonanoic acid) from oleic acid, with a yield of up to 6 mmoL/g dry cells. This yield was 2.4-fold greater than the yield in the control strain before engineering. Therefore, this study will contribute to the development of improved processes for the biosynthesis of industrially relevant medium chain fatty acids via whole-cell biocatalysis.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Bactérias / Pseudomonas putida / Ácido Oleico / Escherichia coli / Ácidos Graxos / Oxigenases de Função Mista Idioma: En Revista: Metab Eng Assunto da revista: ENGENHARIA BIOMEDICA / METABOLISMO Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Bactérias / Pseudomonas putida / Ácido Oleico / Escherichia coli / Ácidos Graxos / Oxigenases de Função Mista Idioma: En Revista: Metab Eng Assunto da revista: ENGENHARIA BIOMEDICA / METABOLISMO Ano de publicação: 2019 Tipo de documento: Article