Dynamic filopodial forces induce accumulation, damage, and plastic remodeling of 3D extracellular matrices.
PLoS Comput Biol
; 15(4): e1006684, 2019 04.
Article
em En
| MEDLINE
| ID: mdl-30958816
The mechanical properties of the extracellular matrix (ECM)-a complex, 3D, fibrillar scaffold of cells in physiological environments-modulate cell behavior and can drive tissue morphogenesis, regeneration, and disease progression. For simplicity, it is often convenient to assume these properties to be time-invariant. In living systems, however, cells dynamically remodel the ECM and create time-dependent local microenvironments. Here, we show how cell-generated contractile forces produce substantial irreversible changes to the density and architecture of physiologically relevant ECMs-collagen I and fibrin-in a matter of minutes. We measure the 3D deformation profiles of the ECM surrounding cancer and endothelial cells during stages when force generation is active or inactive. We further correlate these ECM measurements to both discrete fiber simulations that incorporate fiber crosslink unbinding kinetics and continuum-scale simulations that account for viscoplastic and damage features. Our findings further confirm that plasticity, as a mechanical law to capture remodeling in these networks, is fundamentally tied to material damage via force-driven unbinding of fiber crosslinks. These results characterize in a multiscale manner the dynamic nature of the mechanical environment of physiologically mimicking cell-in-gel systems.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Pseudópodes
/
Matriz Extracelular
Tipo de estudo:
Prognostic_studies
Limite:
Humans
Idioma:
En
Revista:
PLoS Comput Biol
Assunto da revista:
BIOLOGIA
/
INFORMATICA MEDICA
Ano de publicação:
2019
Tipo de documento:
Article
País de afiliação:
Estados Unidos