Your browser doesn't support javascript.
loading
Dynamic filopodial forces induce accumulation, damage, and plastic remodeling of 3D extracellular matrices.
Malandrino, Andrea; Trepat, Xavier; Kamm, Roger D; Mak, Michael.
Afiliação
  • Malandrino A; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.
  • Trepat X; Institute for Bioengineering of Catalonia, Barcelona, Spain.
  • Kamm RD; Institute for Bioengineering of Catalonia, Barcelona, Spain.
  • Mak M; Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.
PLoS Comput Biol ; 15(4): e1006684, 2019 04.
Article em En | MEDLINE | ID: mdl-30958816
The mechanical properties of the extracellular matrix (ECM)-a complex, 3D, fibrillar scaffold of cells in physiological environments-modulate cell behavior and can drive tissue morphogenesis, regeneration, and disease progression. For simplicity, it is often convenient to assume these properties to be time-invariant. In living systems, however, cells dynamically remodel the ECM and create time-dependent local microenvironments. Here, we show how cell-generated contractile forces produce substantial irreversible changes to the density and architecture of physiologically relevant ECMs-collagen I and fibrin-in a matter of minutes. We measure the 3D deformation profiles of the ECM surrounding cancer and endothelial cells during stages when force generation is active or inactive. We further correlate these ECM measurements to both discrete fiber simulations that incorporate fiber crosslink unbinding kinetics and continuum-scale simulations that account for viscoplastic and damage features. Our findings further confirm that plasticity, as a mechanical law to capture remodeling in these networks, is fundamentally tied to material damage via force-driven unbinding of fiber crosslinks. These results characterize in a multiscale manner the dynamic nature of the mechanical environment of physiologically mimicking cell-in-gel systems.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pseudópodes / Matriz Extracelular Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pseudópodes / Matriz Extracelular Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos