A tensor product quasi-Poisson model for estimating health effects of multiple ambient pollutants on mortality.
Environ Health
; 18(1): 38, 2019 04 24.
Article
em En
| MEDLINE
| ID: mdl-31014345
BACKGROUND: People are exposed to mixtures of highly correlated gaseous, liquid and solid pollutants. However, in previous studies, the assessment of air pollution effects was mainly based on single-pollutant models or was simultaneously included as multiple pollutants in a model. It is essential to develop appropriate methods to accurately estimate the health effects of multiple pollutants in the presence of a high correlation between pollutants. METHODS: The flexible tensor product smooths of multiple pollutants was applied for the first time in a quasi-Poisson model to estimate the health effects of SO2, NO2 and PM10 on daily all-cause deaths during 2005-2012 in Guangzhou, China. The results were compared with those from three other conventional models, including the single-pollutant model and the three-pollutant model with and without first-order interactions. RESULTS: The tensor product model revealed a complex interaction among three pollutants and significant combined effects of PM10, NO2 and SO2, which revealed a 2.53% (95%CI: 1.03-4.01%) increase in mortality associated with an interquartile-range (IQR) increase in the concentrations of all three pollutants. The combined effect estimated by the single-pollutant model was 5.63% (95% CI: 3.96-7.34%). Although the conventional three-pollutant models produced combined effect estimates (2.20, 95%CI, 1.18-3.23%; 2.78, 95%CI: 1.35-4.23%) similar to those of the tensor product model, they distorted the estimates and inflated the variances of the estimates when attributing the combined health effects to individual pollutants. CONCLUSIONS: The single-pollutant model or conventional multi-pollutant model may yield misleading results in the presence of collinearity. The tensor product quasi-Poisson regression provides a novel approach to the assessment of the health impacts of multiple pollutants by flexibly fitting the interaction effects and avoiding the collinearity problem.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Poluentes Atmosféricos
/
Modelos Teóricos
Tipo de estudo:
Diagnostic_studies
/
Etiology_studies
/
Prognostic_studies
/
Risk_factors_studies
Limite:
Aged
/
Female
/
Humans
/
Male
Idioma:
En
Revista:
Environ Health
Assunto da revista:
SAUDE AMBIENTAL
Ano de publicação:
2019
Tipo de documento:
Article
País de afiliação:
China