Long-Term Chemical Aging of Hybrid Halide Perovskites.
Nano Lett
; 19(8): 5604-5611, 2019 Aug 14.
Article
em En
| MEDLINE
| ID: mdl-31306574
Because the power conversion efficiency (PCE) of hybrid halide perovskite solar cells (PSCs) could exceed 24%, extensive research has been focused on improving their long-term stability for commercialization in the near future. In a previous study, we reported that the addition of a number of ionized iodide (triiodide: I3-) ions during perovskite film formation significantly improved the efficiency of PSCs by reducing deep-level defects in the perovskite layer. Understanding the relationship between the concentration of these defects and the long-term chemical aging of PSCs is important not only for obtaining fundamental insight into the perovskite materials but also for studying the long-term chemical stability of PSCs. Herein we aim to identify the origin of the natural decay in PCE during long-term chemical aging of PSCs in the dark based on formamidinium lead triiodide by comparing the performance of control and low-defect (LD) devices. After aging for 200 days, the change in the PCE of the LD devices (1.3%) was found to be half that of the control devices (2.6%). We investigated this difference using grazing incidence wide-angle X-ray scattering, deep-level transient spectroscopy, scanning photoelectron microscopy, and high-resolution photoemission spectroscopy. The addition of I3- was found to reduce the amounts of hydroxide and Ox in the halide perovskites (HPs), affecting the migration of defects and the structural transformation of the HPs.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Nano Lett
Ano de publicação:
2019
Tipo de documento:
Article