Your browser doesn't support javascript.
loading
Longitudinal Molecular Magnetic Resonance Imaging of Endothelial Activation after Severe Traumatic Brain Injury.
Vegliante, Gloria; Tolomeo, Daniele; Drieu, Antoine; Rubio, Marina; Micotti, Edoardo; Moro, Federico; Vivien, Denis; Forloni, Gianluigi; Ali, Carine; Zanier, Elisa R.
Afiliação
  • Vegliante G; Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy.
  • Tolomeo D; Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy.
  • Drieu A; INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Normandie University, UNICAEN, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, 14000 Caen, France.
  • Rubio M; INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Normandie University, UNICAEN, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, 14000 Caen, France.
  • Micotti E; Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy.
  • Moro F; Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy.
  • Vivien D; INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Normandie University, UNICAEN, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, 14000 Caen, France.
  • Forloni G; Department of Clinical Research, Caen-Normandie University Hospital, 14000 Caen, France.
  • Ali C; Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy.
  • Zanier ER; INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Normandie University, UNICAEN, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, 14000 Caen, France.
J Clin Med ; 8(8)2019 Jul 30.
Article em En | MEDLINE | ID: mdl-31366109
Traumatic brain injury (TBI) is a major cause of death and disability. Despite progress in neurosurgery and critical care, patients still lack a form of neuroprotective treatment that can counteract or attenuate injury progression. Inflammation after TBI is a key modulator of injury progression and neurodegeneration, but its spatiotemporal dissemination is only partially known. In vivo approaches to study post-traumatic inflammation longitudinally are pivotal for monitoring injury progression/recovery and the effectiveness of therapeutic approaches. Here, we provide a minimally invasive, highly sensitive in vivo molecular magnetic resonance imaging (MRI) characterization of endothelial activation associated to neuroinflammatory response after severe TBI in mice, using microparticles of iron oxide targeting P-selectin (MPIOs-α-P-selectin). Strong endothelial activation was detected from 24 h in perilesional regions, including the cortex and hippocampus, and peaked in intensity and diffusion at two days, then partially decreased but persisted up to seven days and was back to baseline 15 days after injury. There was a close correspondence between MPIOs-α-P-selectin signal voids and the P-selectin stained area, confirming maximal endothelial activation at two days. Molecular MRI markers of inflammation may thus represent a useful tool to evaluate in vivo endothelial activation in TBI and monitoring the responses to therapeutic agents targeting vascular activation and permeability.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Risk_factors_studies Idioma: En Revista: J Clin Med Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Itália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Risk_factors_studies Idioma: En Revista: J Clin Med Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Itália