Your browser doesn't support javascript.
loading
Effect of α7nAChR on learning and memory dysfunction in a rat model of diffuse axonal injury.
Li, Hong-Jiang; Sun, Zhao-Liang; Pan, Yuan-Bo; Xu, Mang-Hua; Feng, Dong-Fu.
Afiliação
  • Li HJ; Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China; Institute of Traumatic Medicine, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China.
  • Sun ZL; Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China; Institute of Traumatic Medicine, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China.
  • Pan YB; Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China.
  • Xu MH; Institute of Traumatic Medicine, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China.
  • Feng DF; Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China; Institute of Traumatic Medicine, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China. Electronic address: drneuro@163.com.
Exp Cell Res ; 383(2): 111546, 2019 10 15.
Article em En | MEDLINE | ID: mdl-31398352
ABSTRACT
Diffuse axonal injury (DAI) is the predominant effect of severe traumatic brain injury and significantly contributes to cognitive deficits. The mechanisms that underlie these cognitive deficits are often associated with complex molecular alterations. α7nAChR, one of the abundant and widespread nicotinic acetylcholine receptors (nAChRs) in the brain, plays important physiological functions in the central nervous system. However, the relationship between temporospatial alterations in the α7nAChR and DAI-related learning and memory dysfunction are not completely understood. Our study detected temporospatial alterations of α7nAChR in vulnerable areas (hippocampus, internal capsule, corpus callosum and brain stem) of DAI rats and evaluated the development and progression of learning and memory dysfunction via the Morris water maze (MWM). We determined that α7nAChR expression in vulnerable areas was mainly reduced at the recovery of DAI in rats. Moreover, the escape latency of the injured group increased significantly and the percentages of the distance travelled and time spent in the target quadrant were significantly decreased after DAI. Furthermore, α7nAChR expression in the vulnerable area was significantly positively correlated with MWM performance after DAI according to regression analysis. In addition, we determined that a selective α7nAChR agonist significantly improved learning and memory dysfunction. Rats in the α7nAChR agonist group showed better learning and memory performance than those in the antagonist group. These results demonstrate that microstructural injury-induced alterations of α7nAChR in the vulnerable area are significantly correlated with learning and memory dysfunctions after DAI and that augmentation of the α7nAChR level by its agonist contributes to the improvement of learning and memory function.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Benzamidas / Aconitina / Compostos Bicíclicos com Pontes / Lesão Axonal Difusa / Disfunção Cognitiva / Receptor Nicotínico de Acetilcolina alfa7 / Aprendizagem / Memória Tipo de estudo: Etiology_studies Limite: Animals Idioma: En Revista: Exp Cell Res Ano de publicação: 2019 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Benzamidas / Aconitina / Compostos Bicíclicos com Pontes / Lesão Axonal Difusa / Disfunção Cognitiva / Receptor Nicotínico de Acetilcolina alfa7 / Aprendizagem / Memória Tipo de estudo: Etiology_studies Limite: Animals Idioma: En Revista: Exp Cell Res Ano de publicação: 2019 Tipo de documento: Article País de afiliação: China