Your browser doesn't support javascript.
loading
Accuracy of machine learning for differentiation between optic neuropathies and pseudopapilledema.
Ahn, Jin Mo; Kim, Sangsoo; Ahn, Kwang-Sung; Cho, Sung-Hoon; Kim, Ungsoo S.
Afiliação
  • Ahn JM; Department of Bioinformatics and Life Science, Soongsil University, Seoul, South Korea.
  • Kim S; Department of Bioinformatics and Life Science, Soongsil University, Seoul, South Korea.
  • Ahn KS; Functional Genome Institute, PDXen Biosystems Inc, Seoul, Republic of Korea.
  • Cho SH; Functional Genome Institute, PDXen Biosystems Inc, Seoul, Republic of Korea.
  • Kim US; Department of Ophthalmology, Kim's Eye Hospital, Youngshin-ro 136, Youngdeungpo-gu, Seoul, 150-034, South Korea. ungsookim@kimeye.com.
BMC Ophthalmol ; 19(1): 178, 2019 Aug 09.
Article em En | MEDLINE | ID: mdl-31399077
BACKGROUND: This study is to evaluate the accuracy of machine learning for differentiation between optic neuropathies, pseudopapilledema (PPE) and normals. METHODS: Two hundred and ninety-five images of optic neuropathies, 295 images of PPE, and 779 control images were used. Pseudopapilledema was defined as follows: cases with elevated optic nerve head and blurred disc margin, with normal visual acuity (> 0.8 Snellen visual acuity), visual field, color vision, and pupillary reflex. The optic neuropathy group included cases of ischemic optic neuropathy (177), optic neuritis (48), diabetic optic neuropathy (17), papilledema (22), and retinal disorders (31). We compared four machine learning classifiers (our model, GoogleNet Inception v3, 19-layer Very Deep Convolution Network from Visual Geometry group (VGG), and 50-layer Deep Residual Learning (ResNet)). Accuracy and area under receiver operating characteristic curve (AUROC) were analyzed. RESULTS: The accuracy of machine learning classifiers ranged from 95.89 to 98.63% (our model: 95.89%, Inception V3: 96.45%, ResNet: 98.63%, and VGG: 96.80%). A high AUROC score was noted in both ResNet and VGG (0.999). CONCLUSIONS: Machine learning techniques can be combined with fundus photography as an effective approach to distinguish between PPE and elevated optic disc associated with optic neuropathies.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Disco Óptico / Células Ganglionares da Retina / Acuidade Visual / Oftalmopatias Hereditárias / Doenças do Nervo Óptico / Neurite Óptica / Aprendizado de Máquina Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: BMC Ophthalmol Assunto da revista: OFTALMOLOGIA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Coréia do Sul

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Disco Óptico / Células Ganglionares da Retina / Acuidade Visual / Oftalmopatias Hereditárias / Doenças do Nervo Óptico / Neurite Óptica / Aprendizado de Máquina Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: BMC Ophthalmol Assunto da revista: OFTALMOLOGIA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Coréia do Sul