Your browser doesn't support javascript.
loading
Effect of O antigen ligase gene mutation on oxidative stress resistance and pathogenicity of NMEC strain RS218.
Zheng, Yucheng; Wang, Huan; Huang, Limin; Zhang, Tongchao; Zong, Bingbing; Ren, Xuanxiu; Zhu, Yongwei; Song, Fangyu; Wang, Xiangru; Chen, Huanchun; Tan, Chen.
Afiliação
  • Zheng Y; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070
  • Wang H; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070
  • Huang L; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070
  • Zhang T; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070
  • Zong B; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070
  • Ren X; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070
  • Zhu Y; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070
  • Song F; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070
  • Wang X; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070
  • Chen H; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070
  • Tan C; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070
Microb Pathog ; 136: 103656, 2019 Nov.
Article em En | MEDLINE | ID: mdl-31400443
ABSTRACT
Escherichia coli is one of the primary causes of bacterial sepsis and meningitis in newborns. E. coli RS218, a prototype strain of neonatal meningitis E. coli (NMEC), is often used in research on the pathogenesis of NMEC. Phagocytes are crucial sentinels of immunity, and their antibacterial ability is largely determined by the capability to produce large amounts of ROS. The capacity of bacteria to endure oxidative pressure affects their colonization in the host. Here, we systematically screened the genes that plays key roles in the tolerance of the model of E. coli RS218 to peroxygen environment using a Tn5 mutant library. As a result, a gene encoding O antigen polymerase (O antigen ligase) that contains the Wzy_C superfamily domain (herein designated as Ocw) was identified in E. coli RS218. Furthermore, we constructed an isogenic deletion mutant of ocw gene and its complementary strain in E. coli. Our results revealed that ocw affects the lipopolysaccharide synthesis, ROS tolerance, and survival of E. coli in the host environment. The discovery of ocw provides important clues for better understanding the function of O-antigen.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Estresse Fisiológico / Meningites Bacterianas / Estresse Oxidativo / Proteínas de Escherichia coli / Escherichia coli / Infecções por Escherichia coli / Ligases / Mutação Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Microb Pathog Assunto da revista: DOENCAS TRANSMISSIVEIS / MICROBIOLOGIA Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Estresse Fisiológico / Meningites Bacterianas / Estresse Oxidativo / Proteínas de Escherichia coli / Escherichia coli / Infecções por Escherichia coli / Ligases / Mutação Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Microb Pathog Assunto da revista: DOENCAS TRANSMISSIVEIS / MICROBIOLOGIA Ano de publicação: 2019 Tipo de documento: Article