Your browser doesn't support javascript.
loading
Quantitative mathematical modeling of clinical brain metastasis dynamics in non-small cell lung cancer.
Bilous, M; Serdjebi, C; Boyer, A; Tomasini, P; Pouypoudat, C; Barbolosi, D; Barlesi, F; Chomy, F; Benzekry, S.
Afiliação
  • Bilous M; MONC team, Inria Bordeaux Sud-Ouest, Talence, France.
  • Serdjebi C; Institut de Mathématiques de Bordeaux, Bordeaux University, Talence, France.
  • Boyer A; SMARTc Unit, Center for Research on Cancer of Marseille (CRCM), Inserm UMR 1068, CNRS UMR 7258, Aix-Marseille University U105, Marseille, France.
  • Tomasini P; SMARTc Unit, Center for Research on Cancer of Marseille (CRCM), Inserm UMR 1068, CNRS UMR 7258, Aix-Marseille University U105, Marseille, France.
  • Pouypoudat C; Multidisciplinary Oncology and Therapeutic Innovations Department and CRCM, Inserm UMR 1068, CNRS UMR 7258, Assistance Publique Hôpitaux de Marseille, Aix Marseille University, Marseille, France.
  • Barbolosi D; Multidisciplinary Oncology and Therapeutic Innovations Department and CRCM, Inserm UMR 1068, CNRS UMR 7258, Assistance Publique Hôpitaux de Marseille, Aix Marseille University, Marseille, France.
  • Barlesi F; Radiation oncology department, Haut-Lévêque Hospital, Pessac, France.
  • Chomy F; SMARTc Unit, Center for Research on Cancer of Marseille (CRCM), Inserm UMR 1068, CNRS UMR 7258, Aix-Marseille University U105, Marseille, France.
  • Benzekry S; SMARTc Unit, Center for Research on Cancer of Marseille (CRCM), Inserm UMR 1068, CNRS UMR 7258, Aix-Marseille University U105, Marseille, France.
Sci Rep ; 9(1): 13018, 2019 09 10.
Article em En | MEDLINE | ID: mdl-31506498
Brain metastases (BMs) are associated with poor prognosis in non-small cell lung cancer (NSCLC), but are only visible when large enough. Therapeutic decisions such as whole brain radiation therapy would benefit from patient-specific predictions of radiologically undetectable BMs. Here, we propose a mathematical modeling approach and use it to analyze clinical data of BM from NSCLC. Primary tumor growth was best described by a gompertzian model for the pre-diagnosis history, followed by a tumor growth inhibition model during treatment. Growth parameters were estimated only from the size at diagnosis and histology, but predicted plausible individual estimates of the tumor age (2.1-5.3 years). Multiple metastatic models were further assessed from fitting either literature data of BM probability (n = 183 patients) or longitudinal measurements of visible BMs in two patients. Among the tested models, the one featuring dormancy was best able to describe the data. It predicted latency phases of 4.4-5.7 months and onset of BMs 14-19 months before diagnosis. This quantitative model paves the way for a computational tool of potential help during therapeutic management.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Encefálicas / Radiocirurgia / Carcinoma Pulmonar de Células não Pequenas / Neoplasias Pulmonares / Modelos Teóricos Tipo de estudo: Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Sci Rep Ano de publicação: 2019 Tipo de documento: Article País de afiliação: França

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Encefálicas / Radiocirurgia / Carcinoma Pulmonar de Células não Pequenas / Neoplasias Pulmonares / Modelos Teóricos Tipo de estudo: Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Sci Rep Ano de publicação: 2019 Tipo de documento: Article País de afiliação: França