Your browser doesn't support javascript.
loading
OxyR Is a Convergent Target for Mutations Acquired during Adaptation to Oxidative Stress-Prone Metabolic States.
Anand, Amitesh; Chen, Ke; Catoiu, Edward; Sastry, Anand V; Olson, Connor A; Sandberg, Troy E; Seif, Yara; Xu, Sibei; Szubin, Richard; Yang, Laurence; Feist, Adam M; Palsson, Bernhard O.
Afiliação
  • Anand A; Department of Bioengineering, University of California, San Diego, La Jolla, CA.
  • Chen K; Department of Bioengineering, University of California, San Diego, La Jolla, CA.
  • Catoiu E; Department of Bioengineering, University of California, San Diego, La Jolla, CA.
  • Sastry AV; Department of Bioengineering, University of California, San Diego, La Jolla, CA.
  • Olson CA; Department of Bioengineering, University of California, San Diego, La Jolla, CA.
  • Sandberg TE; Department of Bioengineering, University of California, San Diego, La Jolla, CA.
  • Seif Y; Department of Bioengineering, University of California, San Diego, La Jolla, CA.
  • Xu S; Department of Bioengineering, University of California, San Diego, La Jolla, CA.
  • Szubin R; Department of Bioengineering, University of California, San Diego, La Jolla, CA.
  • Yang L; Department of Bioengineering, University of California, San Diego, La Jolla, CA.
  • Feist AM; Department of Bioengineering, University of California, San Diego, La Jolla, CA.
  • Palsson BO; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Kongens, Lyngby, Denmark.
Mol Biol Evol ; 37(3): 660-667, 2020 03 01.
Article em En | MEDLINE | ID: mdl-31651953
ABSTRACT
Oxidative stress is concomitant with aerobic metabolism. Thus, bacterial genomes encode elaborate mechanisms to achieve redox homeostasis. Here we report that the peroxide-sensing transcription factor, oxyR, is a common mutational target using bacterial species belonging to two genera, Escherichia coli and Vibrio natriegens, in separate growth conditions implemented during laboratory evolution. The mutations clustered in the redox active site, dimer interface, and flexible redox loop of the protein. These mutations favor the oxidized conformation of OxyR that results in constitutive expression of the genes it regulates. Independent component analysis of the transcriptome revealed that the constitutive activity of OxyR reduces DNA damage from reactive oxygen species, as inferred from the activity of the SOS response regulator LexA. This adaptation to peroxide stress came at a cost of lower growth, as revealed by calculations of proteome allocation using genome-scale models of metabolism and macromolecular expression. Further, identification of similar sequence changes in natural isolates of E. coli indicates that adaptation to oxidative stress through genetic changes in oxyR can be a common occurrence.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Repressoras / Fatores de Transcrição / Vibrio / Proteínas de Escherichia coli / Escherichia coli Tipo de estudo: Prognostic_studies Idioma: En Revista: Mol Biol Evol Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Canadá

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Repressoras / Fatores de Transcrição / Vibrio / Proteínas de Escherichia coli / Escherichia coli Tipo de estudo: Prognostic_studies Idioma: En Revista: Mol Biol Evol Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Canadá