Protective effects of GHK-Cu in bleomycin-induced pulmonary fibrosis via anti-oxidative stress and anti-inflammation pathways.
Life Sci
; 241: 117139, 2020 Jan 15.
Article
em En
| MEDLINE
| ID: mdl-31809714
BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a serious lung problem with advancing and diffusive pulmonary fibrosis as the pathologic basis, and with oxidative stress and inflammation as the key pathogenesis. Glycyl-L-histidyl-l-lysine (GHK) is a tripeptide participating into wound healing and regeneration. GHK-Cu complexes improve GHK bioavailability. Thus, the current study aimed to explore the therapeutic role of GHK-Cu on bleomycin (BLM)-induced pulmonary fibrosis in a mouse model. METHODS: BLM (3 mg/kg) was administered via tracheal instillation (TI) to induce a pulmonary fibrosis model in C57BL/6j mice 21 days after the challenge of BLM. GHK-Cu was injected intraperitoneally (i.p.) at different dosage of 0.2, 2 and 20 µg/g/day in 0.5 ml PBS on alternate day. The histological changes, inflammation response, the collagen deposition and epithelial-mesenchymal transition (EMT) was evaluated in the lung tissue. EMT was evaluated by É-SMA and fibronectin expression in the lung tissue. NF-κB p65, Nrf2 and TGFß1/Smad2/3 signalling pathways were detected by immunoblotting analysis. RESULTS: GHK-Cu complex inhibited BLM-induced inflammatory and fibrotic pathological changes, alleviated the inflammatory response in the BALF by reducing the levels of the inflammatory cytokines, TNF-É and IL-6 and the activity of MPO as well as reduced collagen deposition. In addition, the GHK-Cu treatment significantly reversed the MMP-9/TIMP-1 imbalance and partially prevented EMT via Nrf2, NF-κB and TGFß1 pathways, as well as Smad2/3 phosphorylation. CONCLUSIONS: GHK-Cu presented a protective effect in BLM-induced inflammation and oxidative stress by inhibiting EMT progression and suppressing TGFß1/Smad2/3 signalling in pulmonary fibrosis.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Oligopeptídeos
/
Fibrose Pulmonar
/
Bleomicina
/
Transdução de Sinais
/
Cobre
/
Anti-Inflamatórios
/
Antioxidantes
Tipo de estudo:
Prognostic_studies
Limite:
Animals
Idioma:
En
Revista:
Life Sci
Ano de publicação:
2020
Tipo de documento:
Article
País de afiliação:
China