Your browser doesn't support javascript.
loading
Transcriptome resilience predicts thermotolerance in Caenorhabditis elegans.
Jovic, Katharina; Grilli, Jacopo; Sterken, Mark G; Snoek, Basten L; Riksen, Joost A G; Allesina, Stefano; Kammenga, Jan E.
Afiliação
  • Jovic K; Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands.
  • Grilli J; Department of Ecology and Evolution, University of Chicago, 1101 E 57th St, Chicago, IL, 60637, USA.
  • Sterken MG; Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM, 87501, USA.
  • Snoek BL; The Abdus Salam International Center for Theoretical Physics (ICTP), Strada Costiera 11, I-34014, Trieste, Italy.
  • Riksen JAG; Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands.
  • Allesina S; Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands.
  • Kammenga JE; Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands.
BMC Biol ; 17(1): 102, 2019 12 10.
Article em En | MEDLINE | ID: mdl-31822273
ABSTRACT

BACKGROUND:

The detrimental effects of a short bout of stress can persist and potentially turn lethal, long after the return to normal conditions. Thermotolerance, which is the capacity of an organism to withstand relatively extreme temperatures, is influenced by the response during stress exposure, as well as the recovery process afterwards. While heat-shock response mechanisms have been studied intensively, predicting thermal tolerance remains a challenge.

RESULTS:

Here, we use the nematode Caenorhabditis elegans to measure transcriptional resilience to heat stress and predict thermotolerance. Using principal component analysis in combination with genome-wide gene expression profiles collected in three high-resolution time series during control, heat stress, and recovery conditions, we infer a quantitative scale capturing the extent of stress-induced transcriptome dynamics in a single value. This scale provides a basis for evaluating transcriptome resilience, defined here as the ability to depart from stress-expression dynamics during recovery. Independent replication across multiple highly divergent genotypes reveals that the transcriptional resilience parameter measured after a spike in temperature is quantitatively linked to long-term survival after heat stress.

CONCLUSION:

Our findings imply that thermotolerance is an intrinsic property that pre-determines long-term outcome of stress and can be predicted by the transcriptional resilience parameter. Inferring the transcriptional resilience parameters of higher organisms could aid in evaluating rehabilitation strategies after stresses such as disease and trauma.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Caenorhabditis elegans / Transcriptoma / Termotolerância / Temperatura Alta Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals Idioma: En Revista: BMC Biol Assunto da revista: BIOLOGIA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Caenorhabditis elegans / Transcriptoma / Termotolerância / Temperatura Alta Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals Idioma: En Revista: BMC Biol Assunto da revista: BIOLOGIA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Holanda