Your browser doesn't support javascript.
loading
A Facilely Synthesized Dual-State Emission Platform for Picric Acid Detection and Latent Fingerprint Visualization.
Xi, Duo; Xu, Yanzi; Xu, Ruohan; Wang, Zhi; Liu, Daomeng; Shen, Qifei; Yue, Ling; Dang, Dongfeng; Meng, Lingjie.
Afiliação
  • Xi D; School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China.
  • Xu Y; School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China.
  • Xu R; School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China.
  • Wang Z; School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China.
  • Liu D; School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China.
  • Shen Q; School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China.
  • Yue L; School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China.
  • Dang D; School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China.
  • Meng L; School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China.
Chemistry ; 26(12): 2741-2748, 2020 Feb 26.
Article em En | MEDLINE | ID: mdl-31886910
ABSTRACT
To achieve a highly efficient, dual-state emission platform for picric acid (PA) detection and latent fingerprint (LFP) visualization, flexible alkyl chains have been facilely attached to the commercial organic dye 3,4,9,10-perylenetetracarboxylic dianhydride to provide the target perylenetetracarboxylate molecules PTCA-C4, PTCA-C6, and PTCA-C12. Interestingly, all these molecules exhibited impressive fluorescence characteristics with high photoluminescence quantum yields (PLQYs) of around 93.0 % in dilute solution. Also, emissive features were observed in the solid state because close molecular packing is prevented by the alkyl chains, especially for PTCA-C6, which has a high PLQY value of 49.0 %. Benefiting from its impressive fluorescence performance in both solution and as aggregates, PTCA-C6 was used as a dual-state emission platform for PA detection and also LFP visualization. For example, double-responsive fluorescence quenching in solution was observed in PA detection studies, resulting in high quenching constants (KSV ) and also low limit-of-detection values. Furthermore, the fingerprint powder based on PTCA-C6 also presented an impressive performance on various substrates in terms of fluorescence intensity and resolution, clearly providing the specific fine details of latent fingerprints. These results demonstrate that the facilely synthesized PTCA-C6 with efficient dual-state emission exhibits great potential in the real-world applications of PA detection and LFP visualization.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Perileno / Picratos / Dermatoglifia / Corantes Fluorescentes / Anidridos Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Revista: Chemistry Assunto da revista: QUIMICA Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Perileno / Picratos / Dermatoglifia / Corantes Fluorescentes / Anidridos Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Revista: Chemistry Assunto da revista: QUIMICA Ano de publicação: 2020 Tipo de documento: Article