Your browser doesn't support javascript.
loading
Dnmt3a loss and Idh2 neomorphic mutations mutually potentiate malignant hematopoiesis.
Zhang, Xiaotian; Wang, Xinyu; Wang, Xue Qing David; Su, Jianzhong; Putluri, Nagireddy; Zhou, Ting; Qu, Ying; Jeong, Mira; Guzman, Anna; Rosas, Carina; Huang, Yun; Sreekumar, Arun; Li, Wei; Goodell, Margaret A.
Afiliação
  • Zhang X; Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI.
  • Wang X; Department of Molecular and Human Genetics and.
  • Wang XQD; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX.
  • Su J; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX.
  • Putluri N; Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, China.
  • Zhou T; Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI.
  • Qu Y; Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, China.
  • Jeong M; Division of Biostatistics, Dan L. Duncan Cancer Center.
  • Guzman A; Department of Molecular and Cellular Biology, and.
  • Rosas C; Department of Molecular and Cellular Biology, and.
  • Huang Y; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX.
  • Sreekumar A; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; and.
  • Li W; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX.
  • Goodell MA; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX.
Blood ; 135(11): 845-856, 2020 03 12.
Article em En | MEDLINE | ID: mdl-31932841
Mutations in the epigenetic regulators DNMT3A and IDH1/2 co-occur in patients with acute myeloid leukemia and lymphoma. In this study, these 2 epigenetic mutations cooperated to induce leukemia. Leukemia-initiating cells from Dnmt3a-/- mice that express an IDH2 neomorphic mutant have a megakaryocyte-erythroid progenitor-like immunophenotype, activate a stem-cell-like gene signature, and repress differentiated progenitor genes. We observed an epigenomic dysregulation with the gain of repressive H3K9 trimethylation and loss of H3K9 acetylation in diseased mouse bone marrow hematopoietic stem and progenitor cells (HSPCs). HDAC inhibitors rapidly reversed the H3K9 methylation/acetylation imbalance in diseased mouse HSPCs while reducing the leukemia burden. In addition, using targeted metabolomic profiling for the first time in mouse leukemia models, we also showed that prostaglandin E2 is overproduced in double-mutant HSPCs, rendering them sensitive to prostaglandin synthesis inhibition. These data revealed that Dnmt3a and Idh2 mutations are synergistic events in leukemogenesis and that HSPCs carrying both mutations are sensitive to induced differentiation by the inhibition of both prostaglandin synthesis and HDAC, which may reveal new therapeutic opportunities for patients carrying IDH1/2 mutations.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Transformação Celular Neoplásica / Neoplasias Hematológicas / DNA (Citosina-5-)-Metiltransferases / Hematopoese / Isocitrato Desidrogenase / Mutação Limite: Animals / Humans Idioma: En Revista: Blood Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Transformação Celular Neoplásica / Neoplasias Hematológicas / DNA (Citosina-5-)-Metiltransferases / Hematopoese / Isocitrato Desidrogenase / Mutação Limite: Animals / Humans Idioma: En Revista: Blood Ano de publicação: 2020 Tipo de documento: Article