Your browser doesn't support javascript.
loading
CellCoal: Coalescent Simulation of Single-Cell Sequencing Samples.
Posada, David.
Afiliação
  • Posada D; Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain.
Mol Biol Evol ; 37(5): 1535-1542, 2020 05 01.
Article em En | MEDLINE | ID: mdl-32027371
Our capacity to study individual cells has enabled a new level of resolution for understanding complex biological systems such as multicellular organisms or microbial communities. Not surprisingly, several methods have been developed in recent years with a formidable potential to investigate the somatic evolution of single cells in both healthy and pathological tissues. However, single-cell sequencing data can be quite noisy due to different technical biases, so inferences resulting from these new methods need to be carefully contrasted. Here, I introduce CellCoal, a software tool for the coalescent simulation of single-cell sequencing genotypes. CellCoal simulates the history of single-cell samples obtained from somatic cell populations with different demographic histories and produces single-nucleotide variants under a variety of mutation models, sequencing read counts, and genotype likelihoods, considering allelic imbalance, allelic dropout, amplification, and sequencing errors, typical of this type of data. CellCoal is a flexible tool that can be used to understand the implications of different somatic evolutionary processes at the single-cell level, and to benchmark dedicated bioinformatic tools for the analysis of single-cell sequencing data. CellCoal is available at https://github.com/dapogon/cellcoal.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Software / Técnicas Genéticas / Análise de Célula Única / Genótipo Tipo de estudo: Prognostic_studies Idioma: En Revista: Mol Biol Evol Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Espanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Software / Técnicas Genéticas / Análise de Célula Única / Genótipo Tipo de estudo: Prognostic_studies Idioma: En Revista: Mol Biol Evol Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Espanha