Your browser doesn't support javascript.
loading
Extreme tensile strain states in La0.7Ca0.3MnO3 membranes.
Hong, Seung Sae; Gu, Mingqiang; Verma, Manish; Harbola, Varun; Wang, Bai Yang; Lu, Di; Vailionis, Arturas; Hikita, Yasuyuki; Pentcheva, Rossitza; Rondinelli, James M; Hwang, Harold Y.
Afiliação
  • Hong SS; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA. sshong@ucdavis.edu.
  • Gu M; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
  • Verma M; Department of Materials Science and Engineering, University of California, Davis, CA 95616, USA.
  • Harbola V; Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA.
  • Wang BY; Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China.
  • Lu D; Department of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, 47053 Duisburg, Germany.
  • Vailionis A; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
  • Hikita Y; Department of Physics, Stanford University, Stanford, CA 94305, USA.
  • Pentcheva R; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
  • Rondinelli JM; Department of Physics, Stanford University, Stanford, CA 94305, USA.
  • Hwang HY; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
Science ; 368(6486): 71-76, 2020 04 03.
Article em En | MEDLINE | ID: mdl-32241944
ABSTRACT
A defining feature of emergent phenomena in complex oxides is the competition and cooperation between ground states. In manganites, the balance between metallic and insulating phases can be tuned by the lattice; extending the range of lattice control would enhance the ability to access other phases. We stabilized uniform extreme tensile strain in nanoscale La0.7Ca0.3MnO3 membranes, exceeding 8% uniaxially and 5% biaxially. Uniaxial and biaxial strain suppresses the ferromagnetic metal at distinctly different strain values, inducing an insulator that can be extinguished by a magnetic field. Electronic structure calculations indicate that the insulator consists of charge-ordered Mn4+ and Mn3+ with staggered strain-enhanced Jahn-Teller distortions within the plane. This highly tunable strained membrane approach provides a broad opportunity to design and manipulate correlated electron states.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Science Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Science Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos