Fabrication of an electroconductive, flexible, and soft poly(3,4-ethylenedioxythiophene)-thermoplastic polyurethane hybrid scaffold by in situ vapor phase polymerization.
J Mater Chem B
; 6(24): 4082-4088, 2018 Jun 28.
Article
em En
| MEDLINE
| ID: mdl-32255151
The inherent insolubility and brittleness of poly(3,4-ethylenedioxythiophene) (PEDOT) reduce its processability and practical applicability. Herein, we use in situ vapor phase polymerization (VPP) of 3,4-ethylenedioxythiophene (EDOT) on an oxidant-impregnated thermoplastic polyurethane (TPU) matrix comprising a three-dimensional silica particle assembly to produce a soft, flexible, and conductive TPU-PEDOT hybrid scaffold. The selective removal of silica yielded a highly porous (â¼95%) skeletal structure, with the effective penetration, diffusion, and polymerization of EDOT resulting in uniform PEDOT formation both on the surface and the inner side of the TPU matrix. The mechanical and electrical properties of the obtained scaffold were investigated by bending, compression testing, and stress-strain and electrical measurements. The electrical resistance of the scaffold equaled 17 kΩ and did not change after â¼500-fold bending, whereas the observed elastic modulus was much lower (300 kPa) than that of TPU (3.3 MPa). In vitro biocompatibility was investigated by MC3T3-E1 cell culturing with cell viability evaluated using the WST assay and cell morphology examined by confocal microscopy. Thus, the soft and flexible TPU-PEDOT hybrid scaffold produced by VPP might be practically useful, implying that this preliminary investigation needs to be extended to study the behavior of muscle and nerve cells under electrical stimulation.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
J Mater Chem B
Ano de publicação:
2018
Tipo de documento:
Article
País de afiliação:
Coréia do Sul