Your browser doesn't support javascript.
loading
Learning Inter-Sentence, Disorder-Centric, Biomedical Relationships from Medical Literature.
van der Vegt, Anton H; Zuccon, Guido; Koopman, Bevan.
Afiliação
  • van der Vegt AH; The University of Queensland, St Lucia, Qld, Australia.
  • Zuccon G; The University of Queensland, St Lucia, Qld, Australia.
  • Koopman B; The University of Queensland, St Lucia, Qld, Australia.
AMIA Annu Symp Proc ; 2019: 1216-1225, 2019.
Article em En | MEDLINE | ID: mdl-32308919
Relationships between disorders and their associated tests, treatments and symptoms underpin essential information needs of clinicians and can support biomedical knowledge bases, information retrieval and ultimately clinical decision support. These relationships exist in the biomedical literature, however they are not directly available and have to be extracted from the text. Existing, automated biomedical relationship extraction methods tend to be narrow in scope, e.g., protein-protein interactions, and pertain to intra-sentence relationships. The proposed approach targets intra and inter-sentence, disorder-centric relationship extraction. It employs an LSTM deep learning model that utilises a novel, sequential feature set, including medical concept embeddings. The LSTM model outperforms rule based and co-occurrence models by at least +78% in F1 score, suggesting that inter-sentence relationships are an important subset of all disorder-centric relations and that our approach shows promise for inter-sentence relationship extraction in this and possibly other domains.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença / Armazenamento e Recuperação da Informação / Aprendizado Profundo Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: AMIA Annu Symp Proc Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Austrália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença / Armazenamento e Recuperação da Informação / Aprendizado Profundo Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: AMIA Annu Symp Proc Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Austrália