Your browser doesn't support javascript.
loading
Predicting intra-operative and postoperative consequential events using machine-learning techniques in patients undergoing robot-assisted partial nephrectomy: a Vattikuti Collective Quality Initiative database study.
Bhandari, Mahendra; Nallabasannagari, Anubhav Reddy; Reddiboina, Madhu; Porter, James R; Jeong, Wooju; Mottrie, Alexandre; Dasgupta, Prokar; Challacombe, Ben; Abaza, Ronney; Rha, Koon Ho; Parekh, Dipen J; Ahlawat, Rajesh; Capitanio, Umberto; Yuvaraja, Thyavihally B; Rawal, Sudhir; Moon, Daniel A; Buffi, Nicolò M; Sivaraman, Ananthakrishnan; Maes, Kris K; Porpiglia, Francesco; Gautam, Gagan; Turkeri, Levent; Meyyazhgan, Kohul Raj; Patil, Preethi; Menon, Mani; Rogers, Craig.
Afiliação
  • Bhandari M; Vattikuti Urology Institute, Henry Ford Hospital, Detroit, MI, USA.
  • Nallabasannagari AR; RediMinds Inc., Southfield, MI, USA.
  • Reddiboina M; RediMinds Inc., Southfield, MI, USA.
  • Porter JR; Swedish Medical Centre, Seattle, WA, USA.
  • Jeong W; Vattikuti Urology Institute, Henry Ford Hospital, Detroit, MI, USA.
  • Mottrie A; OLV Vattikuti Institute, Aalst, Belgium.
  • Dasgupta P; MRC Centre of Transplantation, King's College London, London, UK.
  • Challacombe B; Guy's and St Thomas' Hospitals, London, UK.
  • Abaza R; Ohio Health Dublin Methodist Hospital, Dublin, OH, USA.
  • Rha KH; Yonsei University, Seoul, Korea.
  • Parekh DJ; Sylvester Comprehensive Cancer Centre, University of Miami Miller School of Medicine, Miami, FL, USA.
  • Ahlawat R; Medanta Vattikuti Institute, Medanta - The Medicity, Gurugram, Haryana, India.
  • Capitanio U; Urology Clinic, San Raffaele Hospital, Milan, Italy.
  • Yuvaraja TB; Kokilaben Dhirubhai Ambani Hospital, Mumbai, India.
  • Rawal S; Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India.
  • Moon DA; Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.
  • Buffi NM; Humanitas Research Hospital, Milan, Italy.
  • Sivaraman A; Apollo Hospitals, Chennai, India.
  • Maes KK; Centre for Robotic and Minimally Invasive Surgery, Hospital Da Luz, Luz Sáude, Portugal.
  • Porpiglia F; San Luigi Gonzaga Hospital, University of Turin, Orbassano, Italy.
  • Gautam G; Max Institute of Cancer Care, Saket, India.
  • Turkeri L; Acibadem University School of Medicine, Istanbul, Turkey.
  • Meyyazhgan KR; RediMinds Inc., Southfield, MI, USA.
  • Patil P; Vattikuti Foundation, Southfield, MI, USA.
  • Menon M; Vattikuti Urology Institute, Henry Ford Hospital, Detroit, MI, USA.
  • Rogers C; Vattikuti Urology Institute, Henry Ford Hospital, Detroit, MI, USA.
BJU Int ; 126(3): 350-358, 2020 09.
Article em En | MEDLINE | ID: mdl-32315504
OBJECTIVE: To predict intra-operative (IOEs) and postoperative events (POEs) consequential to the derailment of the ideal clinical course of patient recovery. MATERIALS AND METHODS: The Vattikuti Collective Quality Initiative is a multi-institutional dataset of patients who underwent robot-assisted partial nephectomy for kidney tumours. Machine-learning (ML) models were constructed to predict IOEs and POEs using logistic regression, random forest and neural networks. The models to predict IOEs used patient demographics and preoperative data. In addition to these, intra-operative data were used to predict POEs. Performance on the test dataset was assessed using area under the receiver-operating characteristic curve (AUC-ROC) and area under the precision-recall curve (PR-AUC). RESULTS: The rates of IOEs and POEs were 5.62% and 20.98%, respectively. Models for predicting IOEs were constructed using data from 1690 patients and 38 variables; the best model had an AUC-ROC of 0.858 (95% confidence interval [CI] 0.762, 0.936) and a PR-AUC of 0.590 (95% CI 0.400, 0.759). Models for predicting POEs were trained using data from 1406 patients and 59 variables; the best model had an AUC-ROC of 0.875 (95% CI 0.834, 0.913) and a PR-AUC 0.706 (95% CI, 0.610, 0.790). CONCLUSIONS: The performance of the ML models in the present study was encouraging. Further validation in a multi-institutional clinical setting with larger datasets would be necessary to establish their clinical value. ML models can be used to predict significant events during and after surgery with good accuracy, paving the way for application in clinical practice to predict and intervene at an opportune time to avert complications and improve patient outcomes.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Complicações Pós-Operatórias / Procedimentos Cirúrgicos Robóticos / Aprendizado de Máquina / Complicações Intraoperatórias / Neoplasias Renais / Nefrectomia Tipo de estudo: Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Aged / Female / Humans / Male / Middle aged Idioma: En Revista: BJU Int Assunto da revista: UROLOGIA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Complicações Pós-Operatórias / Procedimentos Cirúrgicos Robóticos / Aprendizado de Máquina / Complicações Intraoperatórias / Neoplasias Renais / Nefrectomia Tipo de estudo: Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Aged / Female / Humans / Male / Middle aged Idioma: En Revista: BJU Int Assunto da revista: UROLOGIA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos