Endoplasmic reticulum stress actively suppresses hepatic molecular identity in damaged liver.
Mol Syst Biol
; 16(5): e9156, 2020 05.
Article
em En
| MEDLINE
| ID: mdl-32407006
Liver injury triggers adaptive remodeling of the hepatic transcriptome for repair/regeneration. We demonstrate that this involves particularly profound transcriptomic alterations where acute induction of genes involved in handling of endoplasmic reticulum stress (ERS) is accompanied by partial hepatic dedifferentiation. Importantly, widespread hepatic gene downregulation could not simply be ascribed to cofactor squelching secondary to ERS gene induction, but rather involves a combination of active repressive mechanisms. ERS acts through inhibition of the liver-identity (LIVER-ID) transcription factor (TF) network, initiated by rapid LIVER-ID TF protein loss. In addition, induction of the transcriptional repressor NFIL3 further contributes to LIVER-ID gene repression. Alteration to the liver TF repertoire translates into compromised activity of regulatory regions characterized by the densest co-recruitment of LIVER-ID TFs and decommissioning of BRD4 super-enhancers driving hepatic identity. While transient repression of the hepatic molecular identity is an intrinsic part of liver repair, sustained disequilibrium between the ERS and LIVER-ID transcriptional programs is linked to liver dysfunction as shown using mouse models of acute liver injury and livers from deceased human septic patients.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Regulação da Expressão Gênica
/
Doença Hepática Induzida por Substâncias e Drogas
/
Transcriptoma
/
Estresse do Retículo Endoplasmático
/
Hepatopatias
Tipo de estudo:
Prognostic_studies
Limite:
Animals
/
Humans
/
Male
Idioma:
En
Revista:
Mol Syst Biol
Assunto da revista:
BIOLOGIA MOLECULAR
/
BIOTECNOLOGIA
Ano de publicação:
2020
Tipo de documento:
Article
País de afiliação:
França