Enhancer Predictions and Genome-Wide Regulatory Circuits.
Annu Rev Genomics Hum Genet
; 21: 37-54, 2020 08 31.
Article
em En
| MEDLINE
| ID: mdl-32443951
Spatiotemporal control of gene expression during development requires orchestrated activities of numerous enhancers, which are cis-regulatory DNA sequences that, when bound by transcription factors, support selective activation or repression of associated genes. Proper activation of enhancers is critical during embryonic development, adult tissue homeostasis, and regeneration, and inappropriate enhancer activity is often associated with pathological conditions such as cancer. Multiple consortia [e.g., the Encyclopedia of DNA Elements (ENCODE) Consortium and National Institutes of Health Roadmap Epigenomics Mapping Consortium] and independent investigators have mapped putative regulatory regions in a large number of cell types and tissues, but the sequence determinants of cell-specific enhancers are not yet fully understood. Machine learning approaches trained on large sets of these regulatory regions can identify core transcription factor binding sites and generate quantitative predictions of enhancer activity and the impact of sequence variants on activity. Here, we review these computational methods in the context of enhancer prediction and gene regulatory network models specifying cell fate.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Genoma Humano
/
Elementos Facilitadores Genéticos
/
Biologia Computacional
/
Redes Reguladoras de Genes
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
Limite:
Humans
Idioma:
En
Revista:
Annu Rev Genomics Hum Genet
Assunto da revista:
GENETICA
/
GENETICA MEDICA
Ano de publicação:
2020
Tipo de documento:
Article