Your browser doesn't support javascript.
loading
Enhancer Predictions and Genome-Wide Regulatory Circuits.
Beer, Michael A; Shigaki, Dustin; Huangfu, Danwei.
Afiliação
  • Beer MA; Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA; email: mbeer@jhu.edu.
  • Shigaki D; Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA; email: mbeer@jhu.edu.
  • Huangfu D; Sloan Kettering Institute, New York, NY 10065, USA; email: huangfud@mskcc.org.
Annu Rev Genomics Hum Genet ; 21: 37-54, 2020 08 31.
Article em En | MEDLINE | ID: mdl-32443951
Spatiotemporal control of gene expression during development requires orchestrated activities of numerous enhancers, which are cis-regulatory DNA sequences that, when bound by transcription factors, support selective activation or repression of associated genes. Proper activation of enhancers is critical during embryonic development, adult tissue homeostasis, and regeneration, and inappropriate enhancer activity is often associated with pathological conditions such as cancer. Multiple consortia [e.g., the Encyclopedia of DNA Elements (ENCODE) Consortium and National Institutes of Health Roadmap Epigenomics Mapping Consortium] and independent investigators have mapped putative regulatory regions in a large number of cell types and tissues, but the sequence determinants of cell-specific enhancers are not yet fully understood. Machine learning approaches trained on large sets of these regulatory regions can identify core transcription factor binding sites and generate quantitative predictions of enhancer activity and the impact of sequence variants on activity. Here, we review these computational methods in the context of enhancer prediction and gene regulatory network models specifying cell fate.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Genoma Humano / Elementos Facilitadores Genéticos / Biologia Computacional / Redes Reguladoras de Genes Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Annu Rev Genomics Hum Genet Assunto da revista: GENETICA / GENETICA MEDICA Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Genoma Humano / Elementos Facilitadores Genéticos / Biologia Computacional / Redes Reguladoras de Genes Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Annu Rev Genomics Hum Genet Assunto da revista: GENETICA / GENETICA MEDICA Ano de publicação: 2020 Tipo de documento: Article