Your browser doesn't support javascript.
loading
Differentiation and localization of interneurons in the developing spinal cord depends on DOT1L expression.
Gray de Cristoforis, Angelica; Ferrari, Francesco; Clotman, Frédéric; Vogel, Tanja.
Afiliação
  • Gray de Cristoforis A; Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany.
  • Ferrari F; Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany.
  • Clotman F; Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany.
  • Vogel T; Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany.
Mol Brain ; 13(1): 85, 2020 05 29.
Article em En | MEDLINE | ID: mdl-32471461
ABSTRACT
Genetic and epigenetic factors contribute to the development of the spinal cord. Failure in correct exertion of the developmental programs, including neurulation, neural tube closure and neurogenesis of the diverse spinal cord neuronal subtypes results in defects of variable severity. We here report on the histone methyltransferase Disruptor of Telomeric 1 Like (DOT1L), which mediates histone H3 lysine 79 (H3K79) methylation. Conditional inactivation of DOT1L using Wnt1-cre as driver (Dot1l-cKO) showed that DOT1L expression is essential for spinal cord neurogenesis and localization of diverse neuronal subtypes, similar to its function in the development of the cerebral cortex and cerebellum. Transcriptome analysis revealed that DOT1L deficiency favored differentiation over progenitor proliferation. Dot1l-cKO mainly decreased the numbers of dI1 interneurons expressing Lhx2. In contrast, Lhx9 expressing dI1 interneurons did not change in numbers but localized differently upon Dot1l-cKO. Similarly, loss of DOT1L affected localization but not generation of dI2, dI3, dI5, V0 and V1 interneurons. The resulting derailed interneuron patterns might be responsible for increased cell death, occurrence of which was restricted to the late developmental stage E18.5. Together our data indicate that DOT1L is essential for subtype-specific neurogenesis, migration and localization of dorsal and ventral interneurons in the developing spinal cord, in part by regulating transcriptional activation of Lhx2.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Medula Espinal / Diferenciação Celular / Histona-Lisina N-Metiltransferase / Interneurônios Limite: Animals Idioma: En Revista: Mol Brain Assunto da revista: BIOLOGIA MOLECULAR / CEREBRO Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Medula Espinal / Diferenciação Celular / Histona-Lisina N-Metiltransferase / Interneurônios Limite: Animals Idioma: En Revista: Mol Brain Assunto da revista: BIOLOGIA MOLECULAR / CEREBRO Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Alemanha