Your browser doesn't support javascript.
loading
DNA methylation patterns from peripheral blood separate coronary artery disease patients with and without heart failure.
Bain, Chris R; Ziemann, Mark; Kaspi, Antony; Khan, Abdul Waheed; Taylor, Rachael; Trahair, Hugh; Khurana, Ishant; Kaipananickal, Harikrishnan; Wallace, Sophie; El-Osta, Assam; Myles, Paul S; Bozaoglu, Kiymet.
Afiliação
  • Bain CR; Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia.
  • Ziemann M; Department of Anaesthesiology and Perioperative Medicine, The Alfred Hospital and Monash University, The Alfred Centre, Level 6, 99 Commercial Road, Melbourne, VIC, 3004, Australia.
  • Kaspi A; Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.
  • Khan AW; Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia.
  • Taylor R; Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.
  • Trahair H; Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia.
  • Khurana I; School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Melbourne, VIC, Australia.
  • Kaipananickal H; Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia.
  • Wallace S; Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.
  • El-Osta A; Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia.
  • Myles PS; Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia.
  • Bozaoglu K; Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia.
ESC Heart Fail ; 7(5): 2468-2478, 2020 10.
Article em En | MEDLINE | ID: mdl-32618141
ABSTRACT

AIMS:

Natriuretic peptides are useful for diagnosis and prognostication of heart failure of any cause. Now, research aims to discover novel biomarkers that will more specifically define the heart failure phenotype. DNA methylation plays a critical role in the development of cardiovascular disease with the potential to predict fundamental pathogenic processes. There is a lack of data relating DNA methylation in heart failure that specifically focuses on patients with severe multi-vessel coronary artery disease. To begin to address this, we conducted a pilot study uniquely exploring the utility of powerful whole-genome methyl-binding domain-capture sequencing in a cohort of cardiac surgery patients, matched for the severity of their coronary artery disease, aiming to identify candidate peripheral blood DNA methylation markers of ischaemic cardiomyopathy and heart failure. METHODS AND

RESULTS:

We recruited a cohort of 20 male patients presenting for coronary artery bypass graft surgery with phenotypic extremes of heart failure but who otherwise share a similar coronary ischaemic burden, age, sex, and ethnicity. Methylation profiling in patient blood samples was performed using methyl-binding domain-capture sequencing. Differentially methylated regions were validated using targeted bisulfite sequencing. Gene set enrichment analysis was performed to identify differences in methylation at or near gene promoters in certain known Reactome pathways. We detected 567 188 methylation peaks of which our general linear model identified 68 significantly differentially methylated regions in heart failure with a false discovery rate <0.05. Of these regions, 48 occurred within gene bodies and 25 were located near enhancer elements, some within coding genes and some in non-coding genes. Gene set enrichment analyses identified 103 significantly enriched gene sets (false discovery rate <0.05) in heart failure. Validation analysis of regions with the strongest differential methylation data was performed for two genes HDAC9 and the uncharacterized miRNA gene MIR3675. Genes of particular interest as novel candidate markers of the heart failure phenotype with reduced methylation were HDAC9, JARID2, and GREM1 and with increased methylation PDSS2.

CONCLUSIONS:

We demonstrate the utility of methyl-binding domain-capture sequencing to evaluate peripheral blood DNA methylation markers in a cohort of cardiac surgical patients with severe multi-vessel coronary artery disease and phenotypic extremes of heart failure. The differential methylation status of specific coding genes identified are candidates for larger longitudinal studies. We have further demonstrated the value and feasibility of examining DNA methylation during the perioperative period to highlight biological pathways and processes contributing to complex phenotypes.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença da Artéria Coronariana / Insuficiência Cardíaca Tipo de estudo: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Humans / Male Idioma: En Revista: ESC Heart Fail Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Austrália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença da Artéria Coronariana / Insuficiência Cardíaca Tipo de estudo: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Humans / Male Idioma: En Revista: ESC Heart Fail Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Austrália