Your browser doesn't support javascript.
loading
A thermally activated and highly miscible dopant for n-type organic thermoelectrics.
Yang, Chi-Yuan; Ding, Yi-Fan; Huang, Dazhen; Wang, Jue; Yao, Ze-Fan; Huang, Chun-Xi; Lu, Yang; Un, Hio-Ieng; Zhuang, Fang-Dong; Dou, Jin-Hu; Di, Chong-An; Zhu, Daoben; Wang, Jie-Yu; Lei, Ting; Pei, Jian.
Afiliação
  • Yang CY; Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
  • Ding YF; Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
  • Huang D; Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
  • Wang J; Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
  • Yao ZF; Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
  • Huang CX; Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
  • Lu Y; Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
  • Un HI; Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
  • Zhuang FD; Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
  • Dou JH; Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
  • Di CA; Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
  • Zhu D; Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
  • Wang JY; Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
  • Lei T; Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China.
  • Pei J; Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China. jianpei@pku.edu.cn.
Nat Commun ; 11(1): 3292, 2020 Jul 03.
Article em En | MEDLINE | ID: mdl-32620924
N-doping plays an irreplaceable role in controlling the electron concentration of organic semiconductors thus to improve performance of organic semiconductor devices. However, compared with many mature p-doping methods, n-doping of organic semiconductor is still of challenges. In particular, dopant stability/processability, counterion-semiconductor immiscibility and doping induced microstructure non-uniformity have restricted the application of n-doping in high-performance devices. Here, we report a computer-assisted screening approach to rationally design of a triaminomethane-type dopant, which exhibit extremely high stability and strong hydride donating property due to its thermally activated doping mechanism. This triaminomethane derivative shows excellent counterion-semiconductor miscibility (counter cations stay with the polymer side chains), high doping efficiency and uniformity. By using triaminomethane, we realize a record n-type conductivity of up to 21 S cm-1 and power factors as high as 51 µW m-1 K-2 even in films with thicknesses over 10 µm, and we demonstrate the first reported all-polymer thermoelectric generator.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China