Your browser doesn't support javascript.
loading
Conformal convolutional neural network (CCNN) for single-shot sensorless wavefront sensing.
Opt Express ; 28(13): 19218-19228, 2020 Jun 22.
Article em En | MEDLINE | ID: mdl-32672203
ABSTRACT
Wavefront sensing technique is essential in deep tissue imaging, which guides spatial light modulator to compensate wavefront distortion for better imaging quality. Recently, convolutional neural network (CNN) based sensorless wavefront sensing methods have achieved remarkable speed advantages via single-shot measurement methodology. However, the low efficiency of convolutional filters dealing with circular point-spread-function (PSF) features makes them less accurate. In this paper, we propose a conformal convolutional neural network (CCNN) that boosts the performance by pre-processing circular features into rectangular ones through conformal mapping. The proposed conformal mapping reduces the number of convolutional filters that need to describe a circular feature, thus enables the neural network to recognize PSF features more efficiently. We demonstrate our CCNN could improve the wavefront sensing accuracy over 15% compared to a traditional CNN through simulations and validate the accuracy improvement in experiments. The improved performances make the proposed method promising in high-speed deep tissue imaging.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Opt Express Assunto da revista: OFTALMOLOGIA Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Opt Express Assunto da revista: OFTALMOLOGIA Ano de publicação: 2020 Tipo de documento: Article