Your browser doesn't support javascript.
loading
Wastewater-borne microalga Chlamydomonas sp.: A robust chassis for efficient biomass and biomethane production applying low-N cultivation strategy.
Klassen, Viktor; Blifernez-Klassen, Olga; Bax, Jördis; Kruse, Olaf.
Afiliação
  • Klassen V; Algenbiotechnology and Bioenergy, Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany. Electronic address: viktor.klassen@uni-bielefeld.de.
  • Blifernez-Klassen O; Algenbiotechnology and Bioenergy, Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany.
  • Bax J; Algenbiotechnology and Bioenergy, Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany.
  • Kruse O; Algenbiotechnology and Bioenergy, Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany.
Bioresour Technol ; 315: 123825, 2020 Nov.
Article em En | MEDLINE | ID: mdl-32693344
ABSTRACT
Biogas/biomethane generation from microalgae biomass via anaerobic fermentation is increasingly gaining attention as CO2-neutral energy source. Intensive research has shown, however, that microalgae represent a rather challenging substrate for anaerobic digestion (AD) due to their high cell wall recalcitrance and unfavourable protein content. Previously, the utilization of nitrogen-limited (low-N) microalgal biomass for continuous AD-processes was demonstrated (as proof-of-concept) with remarkable biomethane productivity. The present study shows the efficient portability of the low-N cultivation/fermentation strategy on a robust, wastewater-borne microalga isolate that tolerates high temperature and light conditions and can perfectly cope with microbial contaminations. Continuous long-term anaerobic digestion was characterized by stable and efficient specific biogas and biomethane productivity (765 ± 20 and 478 ± 15 mLNg-1 volatile solids (VS) d-1, respectively), equivalent to volumetric methane productivity of 1912 mLN L-1d-1. The present work underlines the applicability of low-N-biomass of wastewater-borne, robust microalgae as mono-substrate for highly efficient continuous methane generation.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Chlamydomonas / Microalgas Idioma: En Revista: Bioresour Technol Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Chlamydomonas / Microalgas Idioma: En Revista: Bioresour Technol Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2020 Tipo de documento: Article