Your browser doesn't support javascript.
loading
Effects of nitric oxide on the GABA, polyamines, and proline in tea (Camellia sinensis) roots under cold stress.
Wang, Yuhua; Xiong, Fei; Nong, Shouhua; Liao, Jieren; Xing, Anqi; Shen, Qiang; Ma, Yuanchun; Fang, Wanping; Zhu, Xujun.
Afiliação
  • Wang Y; College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China.
  • Xiong F; College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China.
  • Nong S; College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China.
  • Liao J; College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China.
  • Xing A; College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China.
  • Shen Q; Institute of Tea Sciences, Guizhou Academy of Agricultural Sciences, Guiyang, 417100, China.
  • Ma Y; College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China.
  • Fang W; College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China.
  • Zhu X; College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China. zhuxujun@njau.edu.cn.
Sci Rep ; 10(1): 12240, 2020 07 22.
Article em En | MEDLINE | ID: mdl-32699288
Tea plant often suffers from low temperature induced damage during its growth. How to improve the cold resistance of tea plant is an urgent problem to be solved. Nitric oxide (NO), γ-aminobutyric acid (GABA) and proline have been proved that can improve the cold resistance of tea plants, and signal transfer and biosynthesis link between them may enhance their function. NO is an important gas signal material in plant growth, but our understanding of the effects of NO on the GABA shunt, proline and NO biosynthesis are limited. In this study, the tea roots were treated with a NO donor (SNAP), NO scavenger (PTIO), and NO synthase inhibitor (L-NNA). SNAP could improve activities of arginine decarboxylase, ornithine decarboxylase, glutamate decarboxylase, GABA transaminase and Δ1-pyrroline-5-carboxylate synthetase and the expression level of related genes during the treatments. The contents of putrescine and spermidine under SNAP treatment were 45.3% and 37.3% higher compared to control at 24 h, and the spermine content under PTIO treatment were 57.6% lower compare to control at 12 h. Accumulation of proline of SNAP and L-NNA treatments was 52.2% and 43.2% higher than control at 48 h, indicating other pathway of NO biosynthesis in tea roots. In addition, the NO accelerated the consumption of GABA during cold storage. These facts indicate that NO enhanced the cold tolerance of tea, which might regulate the metabolism of the GABA shunt and of proline, associated with NO biosynthesis.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poliaminas / Chá / Prolina / Raízes de Plantas / Camellia sinensis / Ácido gama-Aminobutírico / Óxido Nítrico Idioma: En Revista: Sci Rep Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poliaminas / Chá / Prolina / Raízes de Plantas / Camellia sinensis / Ácido gama-Aminobutírico / Óxido Nítrico Idioma: En Revista: Sci Rep Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China