Your browser doesn't support javascript.
loading
Involvement of CsERF2 in leaf variegation of Cymbidium sinense 'Dharma'.
Gao, Jie; Liang, Di; Xu, Qingquan; Yang, Fengxi; Zhu, Genfa.
Afiliação
  • Gao J; Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China.
  • Liang D; Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China.
  • Xu Q; Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China.
  • Yang F; Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China. yangfengxi@gdaas.cn.
  • Zhu G; Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China. zhugenfa@gdaas.cn.
Planta ; 252(2): 29, 2020 Jul 28.
Article em En | MEDLINE | ID: mdl-32725285
ABSTRACT
MAIN

CONCLUSION:

CsERF2, an ethylene response factor, plays a role in leaf variegation. Leaf variegation is a main ornamental characteristic in Cymbidium sinense (C. sinense). However, the mechanisms of leaf color variegation remain largely unclear. In the present study, we analyzed the cytological and physiological features, as well as molecular analyses of leaves from wild-type (WT) and leaf variegation mutants of Cymbidium sinense 'Dharma'. Chloroplasts with typical and functional structures were discovered in WT and green sectors of the mutants leaves (MG), but not in yellow sectors of the mutant leaves (MY). The activities of key enzymes involved in chlorophyll (Chl) degradation and their substrate contents were significantly increased in MY. Genes related to Chl degradation also showed a significant up-regulation in MY. Transcriptomic analysis showed that the expression of all identified ethylene response factors (ERFs) was significantly up-regulated, and the 1-aminocyclopropane-1-carboxylic acid (ACC) content in MY was significantly higher compared with MG. QRT-PCR analysis validated that the expression levels of genes related to Chl degradation could be positively affected by ethylene (ETH) treatment. Stable overexpression of CsERF2 in Nicotiana tabacum (N. tabacum) led to a decrease in Chl content and abnormal chloroplast. Transcriptomic analysis and qRT-PCR results showed that the KEGG pathway related to chloroplast development and function showed significant change in transgenic N. tabacum. Therefore, the leaf color formation of C. sinense was greatly affected by chloroplast development and Chl metabolism. CsERF2 played an important role in leaf variegation of C. sinense.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Plantas / Folhas de Planta / Orchidaceae Tipo de estudo: Prognostic_studies Idioma: En Revista: Planta Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Plantas / Folhas de Planta / Orchidaceae Tipo de estudo: Prognostic_studies Idioma: En Revista: Planta Ano de publicação: 2020 Tipo de documento: Article