Your browser doesn't support javascript.
loading
Supervised enhancer prediction with epigenetic pattern recognition and targeted validation.
Sethi, Anurag; Gu, Mengting; Gumusgoz, Emrah; Chan, Landon; Yan, Koon-Kiu; Rozowsky, Joel; Barozzi, Iros; Afzal, Veena; Akiyama, Jennifer A; Plajzer-Frick, Ingrid; Yan, Chengfei; Novak, Catherine S; Kato, Momoe; Garvin, Tyler H; Pham, Quan; Harrington, Anne; Mannion, Brandon J; Lee, Elizabeth A; Fukuda-Yuzawa, Yoko; Visel, Axel; Dickel, Diane E; Yip, Kevin Y; Sutton, Richard; Pennacchio, Len A; Gerstein, Mark.
Afiliação
  • Sethi A; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
  • Gu M; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA.
  • Gumusgoz E; Department of Computer Science, Yale University, New Haven, CT, USA.
  • Chan L; Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA.
  • Yan KK; School of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
  • Rozowsky J; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
  • Barozzi I; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
  • Afzal V; Functional Genomics Department, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Akiyama JA; Functional Genomics Department, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Plajzer-Frick I; Functional Genomics Department, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Yan C; Functional Genomics Department, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Novak CS; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
  • Kato M; Functional Genomics Department, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Garvin TH; Functional Genomics Department, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Pham Q; Functional Genomics Department, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Harrington A; Functional Genomics Department, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Mannion BJ; Functional Genomics Department, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Lee EA; Functional Genomics Department, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Fukuda-Yuzawa Y; Functional Genomics Department, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Visel A; Functional Genomics Department, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Dickel DE; Functional Genomics Department, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Yip KY; Functional Genomics Department, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Sutton R; Department of Computer Science, The Chinese University of Hong Kong, Hong Kong, China.
  • Pennacchio LA; Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA.
  • Gerstein M; Functional Genomics Department, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
Nat Methods ; 17(8): 807-814, 2020 08.
Article em En | MEDLINE | ID: mdl-32737473
ABSTRACT
Enhancers are important non-coding elements, but they have traditionally been hard to characterize experimentally. The development of massively parallel assays allows the characterization of large numbers of enhancers for the first time. Here, we developed a framework using Drosophila STARR-seq to create shape-matching filters based on meta-profiles of epigenetic features. We integrated these features with supervised machine-learning algorithms to predict enhancers. We further demonstrated that our model could be transferred to predict enhancers in mammals. We comprehensively validated the predictions using a combination of in vivo and in vitro approaches, involving transgenic assays in mice and transduction-based reporter assays in human cell lines (153 enhancers in total). The results confirmed that our model can accurately predict enhancers in different species without re-parameterization. Finally, we examined the transcription factor binding patterns at predicted enhancers versus promoters. We demonstrated that these patterns enable the construction of a secondary model that effectively distinguishes enhancers and promoters.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Reconhecimento Automatizado de Padrão / Epigênese Genética Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals / Humans Idioma: En Revista: Nat Methods Assunto da revista: TECNICAS E PROCEDIMENTOS DE LABORATORIO Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Reconhecimento Automatizado de Padrão / Epigênese Genética Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals / Humans Idioma: En Revista: Nat Methods Assunto da revista: TECNICAS E PROCEDIMENTOS DE LABORATORIO Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos