Your browser doesn't support javascript.
loading
Synthesizing Camera Noise Using Generative Adversarial Networks.
IEEE Trans Vis Comput Graph ; 27(3): 2123-2135, 2021 Mar.
Article em En | MEDLINE | ID: mdl-32746285
We present a technique for synthesizing realistic noise for digital photographs. It can adjust the noise level of an input photograph, either increasing or decreasing it, to match a target ISO level. Our solution learns the mappings among different ISO levels from unpaired data using generative adversarial networks. We demonstrate its effectiveness both quantitatively, using Kullback-Leibler divergence and Kolmogorov-Smirnov test, and qualitatively through a large number of examples. We also demonstrate its practical applicability by using its results to significantly improve the performance of a state-of-the-art trainable denoising method. Our technique should benefit several computer-vision applications that seek robustness to noisy scenarios.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: IEEE Trans Vis Comput Graph Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: IEEE Trans Vis Comput Graph Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2021 Tipo de documento: Article