Your browser doesn't support javascript.
loading
Signalling molecular recognition nanocavities with multiple functional groups prepared by molecular imprinting and sequential post-imprinting modifications for prostate cancer biomarker glycoprotein detection.
Saeki, Tetsuro; Takano, Eri; Sunayama, Hirobumi; Kamon, Yuri; Horikawa, Ryo; Kitayama, Yukiya; Takeuchi, Toshifumi.
Afiliação
  • Saeki T; Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan. takeuchi@gold.kobe-u.ac.jp.
J Mater Chem B ; 8(35): 7987-7993, 2020 09 21.
Article em En | MEDLINE | ID: mdl-32760956
ABSTRACT
Fluorescent-signalling molecularly-imprinted nanocavities possessing orthogonal dual interaction sites for the detection of prostate cancer biomarker glycoprotein were constructed through molecular imprinting and sequential multistep post-imprinting modifications (PIMs) using a newly designed multi-functionalised PIM reagent (PIR). The PIR, possessing an interaction site and dual reaction sites for PIMs, enabled us to introduce multiple functions including interaction sites and fluorescent reporter groups in a single PIM site, leading to the sensitive fluorescent detection of target glycoproteins with a high signal-to-noise ratio. Prostate specific antigen (PSA), used as a biomarker for prostate-related diseases, was selected as a target glycoprotein. Surface-initiated atom transfer radical polymerisation from template PSA immobilised the substrate with a functional monomer possessing a phenyl boronic acid group, where the template PSA was designed to possess polymerisation groups aligned with disulphide linkage. Using the thiol groups left after removing templates, PIR could be introduced as the 1st PIM. An evaluation of the effect of crosslinking density and blocking treatment on selective detection indicated that highly selective and sensitive detection of PSA was achieved. Furthermore, the 2nd PIM to introduce fluorescent molecules into the nanocavities led to the fluorescent detection of PSA. The new sequential PIM strategy using multi-functional PIR can potentially create various sophisticated artificial molecular recognition materials.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias da Próstata / Glicoproteínas / Biomarcadores Tumorais / Nanotecnologia / Impressão Molecular Tipo de estudo: Diagnostic_studies Limite: Humans / Male Idioma: En Revista: J Mater Chem B Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias da Próstata / Glicoproteínas / Biomarcadores Tumorais / Nanotecnologia / Impressão Molecular Tipo de estudo: Diagnostic_studies Limite: Humans / Male Idioma: En Revista: J Mater Chem B Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Japão