Your browser doesn't support javascript.
loading
Amyloid-ß regulates gap junction protein connexin 43 trafficking in cultured primary astrocytes.
Maulik, Mahua; Vasan, Lakshmy; Bose, Abhishek; Dutta Chowdhury, Saikat; Sengupta, Neelanjana; Das Sarma, Jayasri.
Afiliação
  • Maulik M; Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India. Electronic address: mahua@iiserkol.ac.in.
  • Vasan L; Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India.
  • Bose A; Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India.
  • Dutta Chowdhury S; Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India.
  • Sengupta N; Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India.
  • Das Sarma J; Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India.
J Biol Chem ; 295(44): 15097-15111, 2020 10 30.
Article em En | MEDLINE | ID: mdl-32868453
Altered expression and function of astroglial gap junction protein connexin 43 (Cx43) has increasingly been associated to neurotoxicity in Alzheimer disease (AD). Although earlier studies have examined the effect of increased ß-amyloid (Aß) on Cx43 expression and function leading to neuronal damage, underlying mechanisms by which Aß modulates Cx43 in astrocytes remain elusive. Here, using mouse primary astrocyte cultures, we have examined the cellular processes by which Aß can alter Cx43 gap junctions. We show that Aß25-35 impairs functional gap junction coupling yet increases hemichannel activity. Interestingly, Aß25-35 increased the intracellular pool of Cx43 with a parallel decrease in gap junction assembly at the surface. Intracellular Cx43 was found to be partly retained in the endoplasmic reticulum-associated cell compartments. However, forward trafficking of the newly synthesized Cx43 that already reached the Golgi was not affected in Aß25-35-exposed astrocytes. Supporting this, treatment with 4-phenylbutyrate, a well-known chemical chaperone that improves trafficking of several transmembrane proteins, restored Aß-induced impaired gap junction coupling between astrocytes. We further show that interruption of Cx43 endocytosis in Aß25-35-exposed astrocytes resulted in their retention at the cell surface in the form of functional gap junctions indicating that Aß25-35 causes rapid internalization of Cx43 gap junctions. Additionally, in silico molecular docking suggests that Aß can bind favorably to Cx43. Our study thus provides novel insights into the cellular mechanisms by which Aß modulates Cx43 function in astrocytes, the basic understanding of which is vital for the development of alternative therapeutic strategy targeting connexin channels in AD.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Astrócitos / Peptídeos beta-Amiloides / Junções Comunicantes / Conexina 43 Limite: Animals Idioma: En Revista: J Biol Chem Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Astrócitos / Peptídeos beta-Amiloides / Junções Comunicantes / Conexina 43 Limite: Animals Idioma: En Revista: J Biol Chem Ano de publicação: 2020 Tipo de documento: Article