Your browser doesn't support javascript.
loading
Properties of protein unfolded states suggest broad selection for expanded conformational ensembles.
Bowman, Micayla A; Riback, Joshua A; Rodriguez, Anabel; Guo, Hongyu; Li, Jun; Sosnick, Tobin R; Clark, Patricia L.
Afiliação
  • Bowman MA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556.
  • Riback JA; Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637.
  • Rodriguez A; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556.
  • Guo H; Department of Applied and Computational Mathematics & Statistics, University of Notre Dame, Notre Dame, IN 46556.
  • Li J; Department of Applied and Computational Mathematics & Statistics, University of Notre Dame, Notre Dame, IN 46556.
  • Sosnick TR; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637; trsosnic@uchicago.edu pclark1@nd.edu.
  • Clark PL; Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637.
Proc Natl Acad Sci U S A ; 117(38): 23356-23364, 2020 09 22.
Article em En | MEDLINE | ID: mdl-32879005
ABSTRACT
Much attention is being paid to conformational biases in the ensembles of intrinsically disordered proteins. However, it is currently unknown whether or how conformational biases within the disordered ensembles of foldable proteins affect function in vivo. Recently, we demonstrated that water can be a good solvent for unfolded polypeptide chains, even those with a hydrophobic and charged sequence composition typical of folded proteins. These results run counter to the generally accepted model that protein folding begins with hydrophobicity-driven chain collapse. Here we investigate what other features, beyond amino acid composition, govern chain collapse. We found that local clustering of hydrophobic and/or charged residues leads to significant collapse of the unfolded ensemble of pertactin, a secreted autotransporter virulence protein from Bordetella pertussis, as measured by small angle X-ray scattering (SAXS). Sequence patterns that lead to collapse also correlate with increased intermolecular polypeptide chain association and aggregation. Crucially, sequence patterns that support an expanded conformational ensemble enhance pertactin secretion to the bacterial cell surface. Similar sequence pattern features are enriched across the large and diverse family of autotransporter virulence proteins, suggesting sequence patterns that favor an expanded conformational ensemble are under selection for efficient autotransporter protein secretion, a necessary prerequisite for virulence. More broadly, we found that sequence patterns that lead to more expanded conformational ensembles are enriched across water-soluble proteins in general, suggesting protein sequences are under selection to regulate collapse and minimize protein aggregation, in addition to their roles in stabilizing folded protein structures.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas da Membrana Bacteriana Externa / Proteínas de Bactérias / Bordetella pertussis / Fatores de Virulência de Bordetella / Desdobramento de Proteína Tipo de estudo: Prognostic_studies Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas da Membrana Bacteriana Externa / Proteínas de Bactérias / Bordetella pertussis / Fatores de Virulência de Bordetella / Desdobramento de Proteína Tipo de estudo: Prognostic_studies Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2020 Tipo de documento: Article