Your browser doesn't support javascript.
loading
Yersinia pestis strains from Latvia show depletion of the pla virulence gene at the end of the second plague pandemic.
Susat, Julian; Bonczarowska, Joanna H; Petersone-Gordina, Elina; Immel, Alexander; Nebel, Almut; Gerhards, Guntis; Krause-Kyora, Ben.
Afiliação
  • Susat J; Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany.
  • Bonczarowska JH; Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany.
  • Petersone-Gordina E; Institute of Latvian History, University of Latvia, Kalpaka bulvaris 4, Riga, 1050, Latvia.
  • Immel A; Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany.
  • Nebel A; Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany.
  • Gerhards G; Institute of Latvian History, University of Latvia, Kalpaka bulvaris 4, Riga, 1050, Latvia.
  • Krause-Kyora B; Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany. b.krause-kyora@ikmb.uni-kiel.de.
Sci Rep ; 10(1): 14628, 2020 09 03.
Article em En | MEDLINE | ID: mdl-32884081
ABSTRACT
Ancient genomic studies have identified Yersinia pestis (Y. pestis) as the causative agent of the second plague pandemic (fourteenth-eighteenth century) that started with the Black Death (1,347-1,353). Most of the Y. pestis strains investigated from this pandemic have been isolated from western Europe, and not much is known about the diversity and microevolution of this bacterium in eastern European countries. In this study, we investigated human remains excavated from two cemeteries in Riga (Latvia). Historical evidence suggests that the burials were a consequence of plague outbreaks during the seventeenth century. DNA was extracted from teeth of 16 individuals and subjected to shotgun sequencing. Analysis of the metagenomic data revealed the presence of Y. pestis sequences in four remains, confirming that the buried individuals were victims of plague. In two samples, Y. pestis DNA coverage was sufficient for genome reconstruction. Subsequent phylogenetic analysis showed that the Riga strains fell within the diversity of the already known post-Black Death genomes. Interestingly, the two Latvian isolates did not cluster together. Moreover, we detected a drop in coverage of the pPCP1 plasmid region containing the pla gene. Further analysis indicated the presence of two pPCP1 plasmids, one with and one without the pla gene region, and only one bacterial chromosome, indicating that the same bacterium carried two distinct pPCP1 plasmids. In addition, we found the same pattern in the majority of previously published post-Black Death strains, but not in the Black Death strains. The pla gene is an important virulence factor for the infection of and transmission in humans. Thus, the spread of pla-depleted strains may, among other causes, have contributed to the disappearance of the second plague pandemic in eighteenth century Europe.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peste / Proteínas de Bactérias / Yersinia pestis / Ativadores de Plasminogênio / Genoma Bacteriano Tipo de estudo: Prognostic_studies Limite: Humans País/Região como assunto: Europa Idioma: En Revista: Sci Rep Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peste / Proteínas de Bactérias / Yersinia pestis / Ativadores de Plasminogênio / Genoma Bacteriano Tipo de estudo: Prognostic_studies Limite: Humans País/Região como assunto: Europa Idioma: En Revista: Sci Rep Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Alemanha