Your browser doesn't support javascript.
loading
Disentangling time series between brain tissues improves fMRI data quality using a time-dependent deep neural network.
Yang, Zhengshi; Zhuang, Xiaowei; Sreenivasan, Karthik; Mishra, Virendra; Cordes, Dietmar.
Afiliação
  • Yang Z; Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Ave, Las Vegas, NV 89106, USA; Department of Brain Health, University of Nevada, Las Vegas, NV 89154, USA.
  • Zhuang X; Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Ave, Las Vegas, NV 89106, USA; Department of Brain Health, University of Nevada, Las Vegas, NV 89154, USA.
  • Sreenivasan K; Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Ave, Las Vegas, NV 89106, USA; Department of Brain Health, University of Nevada, Las Vegas, NV 89154, USA.
  • Mishra V; Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Ave, Las Vegas, NV 89106, USA.
  • Cordes D; Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Ave, Las Vegas, NV 89106, USA; Department of Psychology and Neuroscience, University of Colorado, Boulder, CO 80309, USA; Department of Brain Health, University of Nevada, Las Vegas, NV 89154, USA. Electronic address: cordesd@ccf.o
Neuroimage ; 223: 117340, 2020 12.
Article em En | MEDLINE | ID: mdl-32898682
Functional MRI (fMRI) is a prominent imaging technique to probe brain function, however, a substantial proportion of noise from multiple sources influences the reliability and reproducibility of fMRI data analysis and limits its clinical applications. Extensive effort has been devoted to improving fMRI data quality, but in the last two decades, there is no consensus reached which technique is more effective. In this study, we developed a novel deep neural network for denoising fMRI data, named denoising neural network (DeNN). This deep neural network is 1) applicable without requiring externally recorded data to model noise; 2) spatially and temporally adaptive to the variability of noise in different brain regions at different time points; 3) automated to output denoised data without manual interference; 4) trained and applied on each subject separately and 5) insensitive to the repetition time (TR) of fMRI data. When we compared DeNN with a number of nuisance regression methods for denoising fMRI data from Alzheimer's Disease Neuroimaging Initiative (ADNI) database, only DeNN had connectivity for functionally uncorrelated regions close to zero and successfully identified unbiased correlations between the posterior cingulate cortex seed and multiple brain regions within the default mode network or task positive network. The whole brain functional connectivity maps computed with DeNN-denoised data are approximately three times as homogeneous as the functional connectivity maps computed with raw data. Furthermore, the improved homogeneity strengthens rather than weakens the statistical power of fMRI in detecting intrinsic functional differences between cognitively normal subjects and subjects with Alzheimer's disease.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Encéfalo / Mapeamento Encefálico / Imageamento por Ressonância Magnética / Redes Neurais de Computação Tipo de estudo: Guideline / Prognostic_studies Limite: Aged / Female / Humans / Male Idioma: En Revista: Neuroimage Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Encéfalo / Mapeamento Encefálico / Imageamento por Ressonância Magnética / Redes Neurais de Computação Tipo de estudo: Guideline / Prognostic_studies Limite: Aged / Female / Humans / Male Idioma: En Revista: Neuroimage Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos