Your browser doesn't support javascript.
loading
Identification of Noncompetitive Protein-Ligand Interactions for Structural Optimization.
Tosstorff, Andreas; Cole, Jason C; Taylor, Robin; Harris, Seth F; Kuhn, Bernd.
Afiliação
  • Tosstorff A; Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland.
  • Cole JC; Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, U.K.
  • Taylor R; Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, U.K.
  • Harris SF; Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, U.K.
  • Kuhn B; Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States.
J Chem Inf Model ; 60(12): 6595-6611, 2020 12 28.
Article em En | MEDLINE | ID: mdl-33085891
For efficient structure-guided drug design, it is important to have an excellent understanding of the quality of interactions between the target receptor and bound ligands. Identification and characterization of poor intermolecular contacts offers the possibility to focus design efforts directly on ligand regions with suboptimal molecular recognition. To enable a more straightforward identification of these in a structural model, we use a suitably enhanced version of our previously introduced statistical ratio of frequencies (RF) approach. This allows us to highlight protein-ligand interactions and geometries that occur much less often in the Protein Data Bank than would be expected from the exposed surface areas of the interacting atoms. We provide a comprehensive overview of such noncompetitive interactions and geometries for a set of common ligand substituents. Through retrospective case studies on congeneric series and single-point mutations for several pharmaceutical targets, we illustrate how knowledge of noncompetitive interactions could be exploited in the drug design process.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Desenho de Fármacos / Proteínas Tipo de estudo: Diagnostic_studies / Observational_studies Idioma: En Revista: J Chem Inf Model Assunto da revista: INFORMATICA MEDICA / QUIMICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Desenho de Fármacos / Proteínas Tipo de estudo: Diagnostic_studies / Observational_studies Idioma: En Revista: J Chem Inf Model Assunto da revista: INFORMATICA MEDICA / QUIMICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Suíça