Your browser doesn't support javascript.
loading
Identifying individual predictive factors for treatment efficacy.
Alonso, Ariel; Van der Elst, Wim; Sanchez, Lizet; Luaces, Patricia; Molenberghs, Geert.
Afiliação
  • Alonso A; I-BioStat, Catholic University of Leuven, Leuven, Belgium.
  • Van der Elst W; Janssen Pharmaceutica, Companies of Johnson & Johnson, Belgium.
  • Sanchez L; Center of Molecular Immunology, Havana, Cuba.
  • Luaces P; Center of Molecular Immunology, Havana, Cuba.
  • Molenberghs G; I-BioStat, Catholic University of Leuven, Leuven, Belgium.
Biometrics ; 78(1): 35-45, 2022 03.
Article em En | MEDLINE | ID: mdl-33128231
Given the heterogeneous responses to therapy and the high cost of treatments, there is an increasing interest in identifying pretreatment predictors of therapeutic effect. Clearly, the success of such an endeavor will depend on the amount of information that the patient-specific variables convey about the individual causal treatment effect on the response of interest. In the present work, using causal inference and information theory, a strategy is proposed to evaluate individual predictive factors for cancer immunotherapy efficacy. In a first step, the methodology proposes a causal inference model to describe the joint distribution of the pretreatment predictors and the individual causal treatment effect. Further, in a second step, the so-called predictive causal information (PCI), a metric that quantifies the amount of information the pretreatment predictors convey on the individual causal treatment effects, is introduced and its properties are studied. The methodology is applied to identify predictors of therapeutic success for a therapeutic vaccine in advanced lung cancer. A user-friendly R library EffectTreat is provided to carry out the necessary calculations.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Teóricos Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Biometrics Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Bélgica

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Teóricos Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Biometrics Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Bélgica