Your browser doesn't support javascript.
loading
Electro-chemo-mechanical model to investigate multi-pulse electric-field-driven integrin clustering.
Massaro, Evan K; Goswami, Ishan; Verbridge, Scott S; von Spakovsky, Michael R.
Afiliação
  • Massaro EK; Center for Computational Science and Engineering, Massachusetts Institute of Technology, MA, USA.
  • Goswami I; California Institute for Quantitative Biosciences, University of California Berkeley, CA, USA. Electronic address: ishangoswami@berkeley.edu.
  • Verbridge SS; Department of Biomedical Engineering and Applied Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
  • von Spakovsky MR; Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
Bioelectrochemistry ; 137: 107638, 2021 Feb.
Article em En | MEDLINE | ID: mdl-33160180
ABSTRACT
The effect of pulsed electric fields (PEFs) on transmembrane proteins is not fully understood; how do chemo-mechanical cues in the microenvironment mediate the electric field sensing by these proteins? To answer this key gap in knowledge, we have developed a kinetic Monte Carlo statistical model of the integrin proteins that integrates three components of the morphogenetic field (i.e., chemical, mechanical, and electrical cues). Specifically, the model incorporates the mechanical stiffness of the cell membrane, the ligand density of the extracellular environment, the glycocalyx stiffness, thermal Brownian motion, and electric field induced diffusion. The effects of both steady-state electric fields and transient PEF pulse trains on integrin clustering are studied. Our results reveal that electric-field-driven integrin clustering is mediated by membrane stiffness and ligand density. In addition, we explore the effects of PEF pulse-train parameters (amplitude, polarity, and pulse-width) on integrin clustering. In summary, we demonstrate a computational methodology to incorporate experimental data and simulate integrin clustering when exposed to PEFs for time-scales comparable to experiments (seconds-minutes). Thus, we propose a blueprint for understanding PEF/electric field effects on protein induced signaling and highlight key impediments to incorporating experimental values into computational models such as the kinetic Monte Carlo method.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Simulação por Computador / Integrinas / Eletroforese Tipo de estudo: Health_economic_evaluation Idioma: En Revista: Bioelectrochemistry Assunto da revista: BIOQUIMICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Simulação por Computador / Integrinas / Eletroforese Tipo de estudo: Health_economic_evaluation Idioma: En Revista: Bioelectrochemistry Assunto da revista: BIOQUIMICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos