Your browser doesn't support javascript.
loading
Photophysics and Electronic Structure of Lateral Graphene/MoS2 and Metal/MoS2 Junctions.
Subramanian, Shruti; Campbell, Quinn T; Moser, Simon K; Kiemle, Jonas; Zimmermann, Philipp; Seifert, Paul; Sigger, Florian; Sharma, Deeksha; Al-Sadeg, Hala; Labella, Michael; Waters, Dacen; Feenstra, Randall M; Koch, Roland J; Jozwiak, Chris; Bostwick, Aaron; Rotenberg, Eli; Dabo, Ismaila; Holleitner, Alexander W; Beechem, Thomas E; Wurstbauer, Ursula; Robinson, Joshua A.
Afiliação
  • Subramanian S; Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
  • Campbell QT; Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
  • Moser SK; Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
  • Kiemle J; Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States.
  • Zimmermann P; Advanced Light Source, E. O. Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Seifert P; Physikalisches Institut and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, 97074 Würzburg, Germany.
  • Sigger F; Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany.
  • Sharma D; Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany.
  • Al-Sadeg H; Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany.
  • Labella M; ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain.
  • Waters D; Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany.
  • Feenstra RM; Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
  • Koch RJ; Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
  • Jozwiak C; Nanofabrication Facility, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
  • Bostwick A; Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.
  • Rotenberg E; Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.
  • Dabo I; Advanced Light Source, E. O. Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Holleitner AW; Advanced Light Source, E. O. Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Beechem TE; Advanced Light Source, E. O. Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Wurstbauer U; Advanced Light Source, E. O. Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Robinson JA; Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
ACS Nano ; 14(12): 16663-16671, 2020 Dec 22.
Article em En | MEDLINE | ID: mdl-33196167
Integration of semiconducting transition metal dichalcogenides (TMDs) into functional optoelectronic circuitries requires an understanding of the charge transfer across the interface between the TMD and the contacting material. Here, we use spatially resolved photocurrent microscopy to demonstrate electronic uniformity at the epitaxial graphene/molybdenum disulfide (EG/MoS2) interface. A 10× larger photocurrent is extracted at the EG/MoS2 interface when compared to the metal (Ti/Au)/MoS2 interface. This is supported by semi-local density functional theory (DFT), which predicts the Schottky barrier at the EG/MoS2 interface to be ∼2× lower than that at Ti/MoS2. We provide a direct visualization of a 2D material Schottky barrier through combination of angle-resolved photoemission spectroscopy with spatial resolution selected to be ∼300 nm (nano-ARPES) and DFT calculations. A bending of ∼500 meV over a length scale of ∼2-3 µm in the valence band maximum of MoS2 is observed via nano-ARPES. We explicate a correlation between experimental demonstration and theoretical predictions of barriers at graphene/TMD interfaces. Spatially resolved photocurrent mapping allows for directly visualizing the uniformity of built-in electric fields at heterostructure interfaces, providing a guide for microscopic engineering of charge transport across heterointerfaces. This simple probe-based technique also speaks directly to the 2D synthesis community to elucidate electronic uniformity at domain boundaries alongside morphological uniformity over large areas.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Nano Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Nano Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos