Notch receptor GLP-1 regulates toxicity of simulated microgravity stress by activating germline-intestine communication of insulin signaling in C. elegans.
Biochem Biophys Res Commun
; 534: 248-253, 2021 01 01.
Article
em En
| MEDLINE
| ID: mdl-33280816
We here investigated molecular basis of notch receptor GLP-1 in controlling simulated microgravity stress in Caenorhabditis elegans. glp-1 expression was decreased by simulated microgravity. Meanwhile, glp-1 mutation caused resistance to toxicity of simulated microgravity. GLP-1 acted in germline cells to control toxicity of simulated microgravity. In germline cells, RNAi knockdown of glp-1 increased daf-16 expression. RNAi knockdown of daf-16 suppressed resistance to toxicity of simulated microgravity in glp-1 mutant. In simulated microgravity treated worms, germline RNAi knockdown of glp-1 decreased expressions of daf-28, ins-39, and ins-8 encoding insulin peptides, and resistance to simulated microgravity toxicity could be detected in daf-28(RNAi), ins-39(RNAi), and ins-8(RNAi) worms. In simulated microgravity treated worms, RNAi knockdown of daf-28, ins-39, or ins-8 in germline cells further increased expression and nucleus localization of transcriptional factor DAF-16 in intestinal cells. Therefore, the GLP-1-activated germline-intestine communication of insulin signaling is required for control of simulated microgravity toxicity in C. elegans.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Caenorhabditis elegans
/
Simulação de Ausência de Peso
/
Proteínas de Caenorhabditis elegans
/
Receptores Notch
/
Insulina
Tipo de estudo:
Prognostic_studies
Limite:
Animals
Idioma:
En
Revista:
Biochem Biophys Res Commun
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
China